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Supervisory Control System for Ship Damage Control: 
Volume 2 - Scenario Generation and Physical Ship 
Simulation of Fire, Smoke, Flooding and Rupture 

1. Introduction 
This report describes a computer program for Damage Control Simulation (DC-SIM). The DC- 
SLM program provides for specification and real-time simulation of physical ship processes 
associated with ship crises, including fire and smoke spread, hull rupture, fire main pipe rupture, 
multi-deck progressive flooding, sub system deactivation, and ship stability. Also simulated are 
various methods of crisis suppression management, including water mist, Aqueous Film- 
Forming Foam (AFFF), heptafluoro propane (HFP) and desmoking. The primary relevance of 
DC-SIM is to the domain of ship damage control. 

One capacity in which DC-SIM is currently being used is for training of Damage Control 
Assistants (DCAs) at the Sea Warfare Officer School (SWOS) in Newport, RI. Toward this end, 
DC-SIM serves as a component of an immersive damage control trainer called DC-TRAIN. DC- 
SIM allows placing a ship in a crisis state and then simulating the progression of the crisis 
through time based on the laws of physics and the damage control response actions taken by ship 
personnel. The solving of multiple scenarios provides the DCA with training that would not 
otherwise be available, since it is cost-prohibitive to repeatedly inflict major damage to a ship in 
order to provide DCAs with whole-task training in real-time crisis management. 

Another capacity in which the DC-SIM system is currently used is for development of the next 
generation of automated control algorithms for ship damage control. This effort is part of the 
Damage Control - Automation for Reduce Manning (DC-ARM) program of the Naval Research 
Laboratory (NRL), [Parker et.al., 1999]. Toward this end, DC-SIM is being used to assist in the 
development of a supervisory control system for damage control (DC-SCS), by exercising it 
during the research and development phase. The DC-SCS is also being tested in a live fire 
environment aboard the ex-USS Shadwell off the coast of Mobile, Alabama. DC-SIM 
complements the exercising of DC-SCS aboard the ex-USS Shadwell [Carhart, et.al., 1992] by 
permitting simulation of more complex disasters and a far greater number of disasters than is 
possible in a live test facility. It is also planned to use DC-SIM to provide a means of training a 
DCA in the use of the DC-SCS aboard the ex-USS Shadwell; repeated use of the DC-SCS 
increases the extent that the DCA can acquire a situation assessment of the ship crisis through the 
DC-SCS, and also allow the DCA to know when and how to override the DC-SCS when its 
behavior appears incorrect or inappropriate for the situation. 

DC-SIM is able to simulate a wide-range of crisis scenarios. Peacetime scenarios are important 
because this is when most ship damage crises currently occur. Wartime crises are important 
because effective damage control facilitates allowing the ship to achieve its mission. 

This report describes the algorithms used in DC-SIM. It also describes important features under 
development, including hyper-real time performance for effective prediction, and an adaptive 
tuning mechanism for improving fidelity. Also described are various validations of its 
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performance, including comparison with the well-known CFAST algorithms [Portier, et.al., 
1992; Bailey, et.al., 1995] that were developed primarily for simulation of fire-spread in office 
buildings. 

The report is organized as follows: Section 1 introduces the projects, analyzes their requirements 
and then briefly discusses project planning; Sections 2 and 3 discuss data abstraction and 
simulation algorithms in detail; Sections 4 and 5 introduce the computer and user interface of the 
simulator; Section 6 concerns the scenario generator that is designed and implemented to 
simplify use of the simulator; Sections 7 and 8 discuss validation of the implemented functions 
and possible expansion; Appendices A through C provide detailed information on system 
implementation and usage, and Appendix D provides a comparison of DC-SIM with the 
Consolidated Model of Fire Growth and Smoke Transport (CFAST). For readers interested in 
how to use SC-SIM, Sections 4, 5, and Appendix B constitute a simple users manual. 

1.1 Project Requirement and Plan 
In this section, we briefly introduce the requirements for the simulator imposed by two projects 
in the domain of ship damage control. 

1.1.1 DC-TRAIN Requirements 

A major requirement of DC-TRAIN is to collect information about ship status and display it in a 
centralized way to a DC A, in conjunction with the training of a DCA. The purpose of using DC- 
SIM in this project is to provide a realistic damage control simulation with real-time 
performance. The simulator serves as the virtual ship platform for damage control training. 
Based on training requirements, the simulator needs to handle the following tasks: 

• Simulating ship damage for any ship in DC-SIM data format 

• Providing a detailed model of ship structure 

• Simulating interaction among ship parts 

• Real-time simulation and tracking of compartment temperature, pressure, air 
composition, water depth, pipe pressure, and device operating condition 

• Real-time tracking of the consequences of operating any modeled ship element 

• Providing an easy user interface to issue damage control commands 

1.1.2 DC-SCS Requirement 

DC-SCS is a project focused on automatic or computer-aided decision making in damage 
control. Physical events in the simulation or on ship constitute the basics of upper level 
intelligent control processes. For this reason, DC-SIM has important applications in the 
following areas: 

• DC-SIM works as a test bed for the decision-making modules. Since it is not feasible 
to conduct extremely large numbers of tests in a real ship environment, it is crucial to 
test the system on a virtual ship that is provided by DC-SIM. The test purpose is two 
fold: features and functions. A feature test checks if the system is operational-for 



example, does the system receive a high temperature reading? A function test checks 
if the system makes the correct move-for example, when a compartment is ignited, 
does the DC-SCS recognize the crisis? The requirement to conduct the first type of 
test is basic for software engineering, while the requirement of the second type of 
tests is similar to the DCA's except that it requires more careful calculation of 
ignition. 

DC-SIM provides examples for improvement to intelligent control algorithms using 
machine learning. Learning based on trained examples normally requires an extensive 
number of real examples. Since the cost of creating various damage control situations 
on a real ship is very high, such as putting the ship in the state caused by a major 
explosion, a simulator can reduce the cost and increase the speed of the development 
process dramatically. In order to perform this task well, DC-SIM should be able to 
create any kind of crisis with reasonably good fidelity. Additional to the requirements 
previously discussed, DC-SIM should be able to predict correctly the trend of the 
crisis's spread, to describe the pattern of a crisis's start with good accuracy, and also 
to provide a mechanism to facilitate on-line and off-line learning. 

Intelligent Control in DC-SCS doesn't have a complete physical model of the control 
object. Though it may have part of the ship's dynamic characters modeled implicitly 
in its internal data presentation, there is no proof that the presentation is complete and 
effective. Therefore DC-SIM, working as an explicit physical model of the control 
object, can be very helpful to DC-SCS in controlling ship damage: 

o   Hyper-real time crisis prediction. In conducting casualty control with limited 
resources, it is vital to order crises based on their seriousness and thus come 
up with an optimal solution with minimum loss. With hyper- real time 
performance, DC-SIM can almost instantly make short-term predictions of a 
crisis's development and spread under various assumptions of intervening 
casualty control response. The prediction it makes is then provided to the 
artificial intelligent (AI) decision maker to evaluate the seriousness of the 
crisis and the effectiveness of casualty control responses available. This usage 
requires DC-SIM to have hyper-real time performance in short-term 
prediction. In order to make this goal feasible, the prediction is allowed to be 
local, i.e. on a compartment cluster, instead of ship-scale. And this usage 
doesn't impose requirements on higher fidelity as long as only the trend and 
order of crisis development and spread need to be determined. 

o   Sensor and actuator validation. Sensors and actuators may malfunction. 
Assuming that the probability of a sensor malfunction is low, by making a 
consistency check of a possibly malfunctioning sensor with other sensors, it 
can be determined if the suspected sensor is malfunctioning or not. DC-SIM 
provides vital information to conduct the consistency check. Validation of 
actuators works similarly. Based on DC-SIM'S prediction of the immediate 
consequences of an actuator's operation, it is possible to tell whether or not 
the actuator's operation has been conducted successfully. 

o    Crisis recognition. It is very important to recognize a crisis before it is fully 
developed. In this case, DC-SIM again provides a consistency check to 



isolate a false alarm. The above two usages both impose requirements on the 
consistency of simulation results. 

• In summary, based on the requirements imposed by the DC-TRAIN and DC-SCS 
projects, DC-SIM should also be able to create all possible crises to make short-term 
prediction of a crisis's spread trend within a restricted area in hyper-real time, and to 
provide consistent simulation results. 

1.2 Incremental Development Plan 
The development of the simulator is incremental. The approach is to have a fully functional 
simulator, and then incrementally improve its accuracy by incrementally increasing its 
complexity. For example, the first fire simulator simulated only bulkhead conduction and simple 
vent convection, and had no air composition tracking. Subsequently, a more complicated 
convection model was introduced, internal free convection was implemented, boundary layer 
effects were taken into account, and air composition was tracked. Every upgrade was based on 
the previous model and code. No major redesign has been found to be necessary, thanks to the 
straightforward design of basic objects based on real world abstraction. 

2. Knowledge Representation 

In this section we discuss how the ship's structure is represented abstractly in the DC-SIM 
format database. The detailed information can be found in Appendix A. The specifications 
underwent a number of changes as the model became more and more comprehensive and 
sophisticated. 

All the detailed specifications are illustrated in Appendix A: DC-SIM Ontology, which may be 
referred to for questions that are not addressed or answered by the text in this section. 

2.1   Representation of Ship Static Structure 
A ship consists of compartments, pipe networks, electrical networks, and devices attached to 
various networks. 

• Compartments: A compartment consists of a set of bulkheads. Once the bulkheads 
forming a compartment are specified, the compartment is specified. For vents like 
doors, we regard them as associated with bulkheads, i.e., a door is inside a bulkhead 
and therefore identifying the bulkhead also identify a door's location. 

o   Bulkheads: A bulkhead consists of two sides. Here we require that any 
bulkhead, actually a bulkhead segment, should have rectangular or triangular 
shape, and its two sides should be of the same geometry. Thus a bulkhead can 
be specified by its two sides. The distance between these two sides is the 
bulkhead's thickness. We assume that all the bulkheads have uniform heat 
conductivity. 



o   Sides: A side has a rectangular or triangular shape. It has no thickness. Its 
geometry is specified by its vertices. 

o    Vertices: This is the most fundamental element of ship structure. A 3-D 
coordinate system is associated with the ship. The z-axis goes upward, the x- 
axis goes forward, and y-axis goes to starboard. For detailed settings, refer to 
DC-SIM Ontology (Appendix A). 

• Pipe networks: There are three kinds of pipe networks, namely fire main, chill water, 
and ventilation systems. The ventilation system may not be actually a pipe network, 
but we approximate it in this way to get a uniform structure and simulation algorithm, 
and to reduce coding and maintenance effort. However, we need to point out here that 
using the same pipe network solver on the ventilation network as that used in solving 
fire main and chill water systems can be a problem because air is compressible while 
water isn't. But since the ventilation system normally works at low pressure, we 
regard this a minor problem, and the amount of error it can introduce is within the 
project's tolerance. 

o   Fire main: The fire main network is where seawater comes from to fight a 
fire. Water is pumped into the network at elevated pressure by main pumps. A 
graphical structure is used to model the fire main and other pipe networks. 
Basically a fire main consists of pipes, pumps and connections. Pipes and 
pumps are regarded as edges, and connections as nodes. A node is simply an 
abstract point, with additional fields indicating type (junction, T-connection or 
elbow). A pipe is specified by its two end nodes and its diameter. A pump is 
specified by its two end nodes, its maximum flow rate and its maximum head 
pressure. Additional dynamic fields also exist, such as operation status and 
power level. Pipe ruptures are modeled by special types of pipes and nodes. 
Detailed information can be found in the DC-SIM Ontology section 
(Appendix A). 

o   Chill water: The chill water network is the cooling system for ship devices. Its 
basic structure is the same as the fire main's, except that it doesn't get water 
from the sea. It is a closed pipe network with no connection to the 
environment (except when there is a rupture, or certain discharge valves are 
open). Its specification is thus the same as that of fire main, except that it has 
heat exchange devices built in for cooling purposes. 

o    Ventilation system: The ventilation system consists of fans and ducts. It can be 
viewed as a pipe network structure. 

• Electrical network: This is the power source of the whole ship. The electrical network 
contains generators, circuits, and various devices. It's not fully in the scope of this 
simulation design. We are only interested in the heat generating properties of its 
devices, and its exact topology for damage injection. 

• Various devices: This is a broad area, including systems from portable pumps to radar. 
Most of them are modeled in the networks. 



2.2 Representation of Ship Dynamic Status 

Ship dynamic status includes any physical properties, geometrical characters and 
device operation status. 

2.2.1 Physical properties 

Physical properties are the major task of simulation. The majority of them are contained in the 
Compartment Status table, including zone heights, zone temperatures, zone pressures, detailed 
air composition, combustible fuel amount, suppressed fuel amount, and water depth. Others are 
in tables such as Fire Main Pressure and Fire Main Flow Rate. 

2.2.2. Geometrical characters 

These are status of ship's geometrical structure. Bulkhead ruptures, vent (doors and hatches) 
status and pipe ruptures are included. They are contained in corresponding tables like Wall 
Rupture table, various vent tables, and Fire Main Rupture table. 

2.2.3 Device operation status 

These are the operational status of various devices, including pumps, valves, sprinklers and all 
the electrical devices. They are included in tables of Fire Main Pumps, Fire Main Valves, Fire 
Main Sprinklers, and those for electrical devices. 

3. Simulation Engine 

So far we have introduced the data representation of ship damage control simulation in the 
central database. The simulation engines constitute the core of the simulation. They operate 
directly on the data representation. More specifically, based on the problem setting, a simulation 
engine reads in the initial state, simulates the continuous state change, and at the same time 
reports it to the central database. (Refer to Section 4: Simulation Computer Interface.) For 
example, the fire main simulation engine calculates pipe network flow rate and pressure 
distribution, and monitors network status change. Once some operation like opening a valve 
occurs, it updates the data it keeps, solves fire main again if necessary, and then reports the new 
flow rate and pressure distribution to the central database for the simulation user's retrieval. The 
following depicts what can happen in a compartment: 



Figure 1. What can happen in a compartment 

First, there can be combustion inside a compartment. This is represented by the plume in the 
center of the Figure. Driven by the pressure and mass concentration gap, convection occurs at 
doors and bulkhead ruptures. So does internal convection, i.e. hot air up and cool air down. And 
driven by a temperature gap across a bulkhead segment, conduction occurs. Both affect and are 
affected by the boundary layer. The plume can also generate radiation. These are roughly what 
should be simulated by the fire simulation engine. 

Second, flooding can be introduced, either a fire main rupture or simply from neighboring 
compartments or the sea. And there can be interaction between fire and flooding: either flooding 
puts out fire, or fire spreads with flooding. Flooding propagation should be handled by a fire 
main solver and a flooding simulation engine, and its interaction with fire by part of fire 
simulation. 

Third, the electrical devices in the compartment can also cause problems; for example, fire 
caused by shorting. This is coupled with the cooling system, i.e., chill-water, and also with the 
rest of electrical network. This part should be handled by an electrical network solver and a chill 
water system solver. 

Finally, there is the casualty control system: watermist, AFFF, fire boundary, de-flooding or de- 
smoking. These are distributed among various simulation engines. 

Though the design is compartment based, all the compartments can fit together seamlessly to 
form a global view of the whole ship. 

In the following sections we discuss the simulation engines one by one in a fairly detailed 
manner. 



3.1 Fire and Smoke Simulation 
This is the most important and complicated part of DC-SIM. The main task is to predict the 
continuous status change of a group of compartments affected by fire. This means that 
temperature, gas concentration, pressure, fuel remaining, and other parameters for any 
compartment affected by fire are traced in real time, and that concurrent events such as ignition, 
casualty control response, and interaction with other modules like flooding are simulated 
concurrently. 

The overall design of the fire simulator is object oriented. We didn't adopt methods used in 
large-scale numerical simulation coding that on the one hand typically provide fast numerical 
calculation speed and are easy to optimize from a numerical analysis perspective, but on the 
other hand are somewhat incompetent in representing real-world objects, less intuitive, and prone 
to introduce bugs during coding. Rather, we model each compartment with its internal physical 
and chemical structure, and also model each compartment's interaction with compartment- 
connections such as bulkheads or doors. So, putting the compartments together automatically 
forms a complete image of the ship. Working in this way, it is fairly easy to add new features. 
For example, what if we want to add simulation of a fire boundary? There is no need to get 
global representation and control of all the fire boundaries set up on the ship. Instead, a fire 
boundary just maintains the side temperature of a bulkhead, and has some effect on water vapor 
concentration and water depth (if necessary) of the compartment that it is set in. So we can say 
the design is "localized". Every feature is kept in an appropriate object locally, while their 
structural sum forms a whole ship with integrated functions. 

3.1.1 Mathematical Model 

Simulation of heat transfer with air motion can be accomplished in several ways with differing 
speed, fidelity, and adaptability. A relatively simple model, the two-zone model, is used in DC- 
SIM for fire and smoke emulation. This choice is based on two facts: First, a rough estimate of 
computation requirements indicates that using more sophisticated models may not be able to 
render real time performance; second, experiments have illustrated that a compartment on fire 
typically has two zones with relatively uniform physical properties. 

The mathematical model for fire and smoke can be divided into several sections, each of which 
deals with a specific phenomenon. We start with the combustion process from which mass and 
energy is produced. 

3.1.1.1 Combustion 

Combustion is the ultimate force for most heat transfer and air motion. Theoretically, a 
combustion process is determined by: 

• Chemical properties and surface condition of the combustible; 

• Temperature, pressure and air composition around the combustible; 

Based on these conditions, thermodynamics determines the chemical reaction type and 
combustion speed. 



However, such a detailed model is far too complicated to maintain at real time on a personal 
computer, and it doesn't fit our project's requirement either. Rather, we use approximation to 
greatly reduce the computational complexity: 

• Reaction types, or from another point of view, reaction equilibrium, is assumed to 
depend on a compartment's average oxygen concentration only. For example, when 
carbon is burnt, both carbon dioxide and carbon monoxide can be produced by two 
different processes, i.e., complete and incomplete burning. We assume that the 
relative ratio of these two combustion processes depends on the oxygen concentration 
only. This is a very rough assumption since temperature and environment gas 
concentration can also affect the process. 

• Combustion speed is assumed to be proportional to oxygen concentration. In this 
way, we disregard the effect of temperature and fuel surface condition. 

Based on these simplifications, the combustion can be simulated effectively using fuel 
characterization provided by the central database. The central database contains two tables 
related with fuel properties: FuelDescription and ReactionProperties. The FuelDescription table 
contains basic data on fuel consumption rate, heat released by complete/incomplete burning of a 
unit of the fuel, and also soot released by complete/incomplete burning of unit mass of the fuel. 
The ReactionProperties table contains description of possible reactions. It actually describes the 
equation for each type of reaction. The coefficients of reactant are negative, and products 
positive, both normalized to consumption of one mole of fuel . 

3.1.1.2 Radiation 
Due to the computational complexity that would be introduced by geometrical calculation of 
radiation, we make the simplified assumption that a compartment has just two uniformly 
distributed zones, and we don't simulate radiation in detail. Instead, we simulate plume radiation 
by an empirical factor that is tunable in the user interface. (See Section 5.1). The default value is 
set as 0.8 which means that 80% of the heat is assumed to be turned into radiation, and 
distributed into the two zones evenly based on zone heights. 

The lack of simulations of other types of radiation brings numerical error. Fortunately, part of the 
error is compensated by the basic two-zone model we use, and by the parameter tuning 
mechanism. 

3.1.1.3 Internal free convection 
Normally in a compartment affected by fire, the temperature of the lower zone is lower than that 
of the upper zone. This phenomenon results from hot air's lower density than cool air's, and is 
coupled with the boundary layer's motion. 

In this project we don't plan to solve the boundary layer equation accurately. Therefore we also 
used an aggressive approximation to simplify interval free convection simulation. The goal is to 
reach a reasonable temperature distribution between the upper and lower zone without too much 

1 This table may also contain heat and soot information. This is redundant and actually not used 
by DC-SIM. 



effort in both coding and computing. The method we adopted is as following: Based on the 
temperature gap between the upper and lower zone, a certain amount of upward and downward 
airflow is calculated and it changes zone heights. This is a dynamic compensation process that 
modifies each zone's height and temperature. This process is not launched until a compartment is 
affected by fire, and it eventually reaches a certain equilibrium that can be empirically tested. In 
designing this process, there is no guarantee that its result will be realistic, but we believe that its 
structure, i.e. the dynamic compensation mechanism, will provide realistic results if its 
parameters are chosen wisely. These parameters can be tuned in a user interface at real time 
when simulation is running. (See Section 5.1). 

3.1.1.4 Vent convection 

The convection through an open vent is simulated by solving a Bernoulli equation with a 
restriction factor. 

Only convection between the corresponding upper zones and lower zones are calculated. The 
resulting flow rate is then used to calculate a compartment's mass distribution, temperature 
distribution, and change of gas concentration. 

Since the simulation step is fixed for compartments with different size, fast convection can 
introduce numerical instability. To solve this problem we used a factor determined by a 
compartment's geometry to restrict the airflow rate through any vent connected to this 
compartment. Though this method inevitably affects the fidelity of simulation, its overall 
performance seems to be good: it eliminates data oscillation while still maintaining realistic fire 
spread speed. 

Special phenomena like plumes shooting from open vents are not simulated exactly. In these 
cases, the simulator may not be able to give an accurate result in a small time span. But from a 
perspective of long-term simulation, this efficiency doesn't affect simulation accuracy. 

3.1.1.5 Bulkhead conduction 

Bulkhead conduction is determined by a one-dimensional Fourier equation. Since a compartment 
has two zones with different temperature, a bulkhead's two sides also have their separate 
temperature zones. Therefore a bulkhead segment is normally cut into 3 parts, each of which has 
uniform temperature at either side. Heat conduction is calculated with each part. The conduction 
calculation is relatively simple. Since insulation, composition and thickness vary for bulkheads, 
we give users the choice to tune a coefficient to adjust bulkhead conductivity. (See Section 5.1).' 
We must point out that although the conductivity is allowed to be tuned, it is only recommended 
to do so if the user believes that the default conductivity is not appropriate. 

Bulkhead conduction simulation has been compared by CFAST based on a one-compartment 
case. (See Appendix D). 

3.1.1.6 Boundary layer effect 

Bulkhead conduction and free convection both contribute in forming a layer of air with a 
temperature gradient. The layer has uneven thickness, and is in constant motion that contributes 
to free internal convection as discussed in the previous section. In our two-zone simplified 



model, we don't try to solve the boundary equation explicitly. Instead, we approximate its effect 
on heat and mass transfer by: 

1. Heat transfer on bulkhead conduction: Since the two-zone model assumes uniform 
temperature distribution in either zone, the temperature gap across a bulkhead 
segment would be too much if we just use the zone temperature gap. In order to 
correct this problem, we introduce a factor called Boundary Layer Coefficient to 
reduce the temperature gap across a bulkhead segment. So by tuning this parameter, 
the effect of boundary layer on conduction can be regulated. (See Section 5.1). 

2. Contribution to heat and mass transfer in internal free convection: This has been 
taken into account in the section on internal free convection; i.e., the effect has been 
covered by the mechanism we established to simulate internal free convection and 
therefore here we don't need an additional structure to simulate the boundary layer 
effect explicitly. 

3.1.1.7 Direct fire fighting 
Simulation of fire fighting is part of DC-SIM'S objectives. DC-SIM can do the following 
simulation in an empirical way: 

Water Mist, seawater, AFFF, Halon, and CO2. Water reduces fire size, changes fuel's 
combustibility, and decreases temperature when vaporizing. The exact amount of water that is 
vaporized and applied to fuel cannot be determined explicitly. Therefore only a very rough 
estimate is available. In DC-SIM, we use "dose" to indicate the amount of effort that is applied. 
100 dose stands for the maximum, and 0 for the minimum. The relationship between fire control 
performance and dose can be tuned by experienced users. AFFF, Halon and CO2 are simulated in 
similar ways, except that AFFF affects only fuel combustibility, Halon only oxygen 
concentration. 

3.1.1.8 Fire boundaries 
Fire boundaries can be set on any side of a bulkhead segment. By setting a fire boundary on a 
side, that side's temperature is maintained at a constant level, and thus further heat transfer to the 
compartment that is protected by the fire boundary is deterred (depending on how completely the 
compartment is protected by fire boundaries). Failure to maintain a fire boundary has not yet 
been implemented. 

3.1.1.9 Ventilation (de-smoking) 
The ventilation system consists of a set of ducts and fans. The structure of the system is similar 
to that of fire main. But this doesn't indicate that we can use the same numerical algorithm. 
Simulating ventilation is more complicated since air is compressible while water isn't. Actually 
based on our project requirement, it is impossible to solve the ventilation system in detail at good 
fidelity. So a compromise has to be made, which is just one like the fire main simulation, 
together with a monitor on normal air pressure to make sure that the air can be regarded as 
incompressible. Such a simulator for the ventilation system can be anticipated in the near future, 
but currently DC-SIM uses only a rudimentary method to simulate de-smoking. Upon receiving a 
de-smoking command, a certain flow rate (both in and out) is assumed and the air composition 
re-calculated. De-smoking can cause re-ignition as it may raise oxygen concentration. 



3.1.2 Implementation 

The fire and smoke simulation engine is implemented in class CFire. For more information, 
please see Class CFire in Appendix C. 

3.2 Flooding Simulation 
The main task for flooding simulation is to trace water flow through various vents and water 
levels inside any flooded compartments. Ideally ship listing should also be considered, as it is 
very important for ship survival and affects water flow among compartments. But for simplicity 
we assume that effective counter-flooding measures are always carried out in time. So the ship is 
assumed to be in horizontal position all the time. 

3.2.1 Mathematical Model 

The water surface inside a compartment is assumed to be horizontal. Therefore a water height 
gap occurs across open vents. This is taken as the driving force of water flow through vents. In 
detail, Bernoulli's Equation with restriction factor modeling energy loss in friction and in other 
forms is used. 

SOURCE 

Pipe Rupture 

■~~t~~ 1    Fire Main   1" 

C1 C2     /        C3          / C4 C5 

C6 

C7 \            C8 \               C9 C10 

Figure 2. Modeling flooding 

Applying Bernoulli's equation to two adjacent compartments that are not full of water is easy 
since the surface pressure of each compartment can be traced. But in case that one compartment 
is full of water, its surface pressure cannot be determined by itself, nor can it be determined by 
looking at its neighbors. Instead, the surface pressure is directly affected by all the compartments 
that are full of water and by those to which it is connected. For example, suppose compartment 
A is below compartment B and C, and A and B are connected by an open scuttle, while the 
scuttle connecting A and C are closed. If B is flooded and A is full of water, A's'surface pressure 
is determined by B's surface pressure, assuming water flow doesn't involve too much head loss. 
But if suddenly the scuttle connection between A and C is opened (or destructed by some 
explosion), there can be an abrupt change of A's surface pressure and that can also affect B's 
surface pressure if B's also full of water. Therefore, in order to have correct surface pressure 
data, it is necessary to keep a global picture of the compartments flooded, especially all the 
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compartments that are full of water. This picture needs to be analyzed and updated in every 
round of simulation. 

Unfortunately, maintaining the global picture is not a good choice since it violates the object 
oriented design and localization principle. Doing so would introduce heavy overhead once a ship 
structural change occurs, and even instability if two water sources are competing to determine 
the surface pressure of a compartment. In order to localize this problem, while at the same time 
not introducing too much complexity into the simulator, we assigned a virtual pump (residual 
water) to each compartment. The pump actually stands for the very slight compressibility that 
water can have. The mechanism works in this way: When a compartment is full of water, it can 
still hold a tiny amount of residual water. The residual water forms residual pressure and the 
residual pressure, together with a temporary surface pressure, can determine in which way water 
flows even when a compartment and all its neighbors are full of water. Once this is determined, 
the temporary surface pressure can be updated based on the direction of water flow. In this way, 
we just introduced very little computational overhead, but saved the trouble in tracing the whole 
graph of the compartments that are connected to find out the correct surface pressure. 

When examined closely, this residual water method cannot promise that the amount of residual 
water, and the direction of water flow, will remain stable. This is true in some well-chosen cases. 
But, such local instability doesn't affect over fidelity of flooding simulation. It turns out 
eventually (and actually very soon) the process reaches equilibrium and the total amount of 
residual water is very small. 

3.2.2 Implementation 
Some information on flooding implementation can be found in Appendix C. 

3.3 Fire Main Simulation 
The fire main is the pipe network to provide water for fire fighting purposes. Its water resource is 
the sea. This network covers the whole ship and is powered by the fire pumps. 

The simulation's purpose is based on its configuration to find out the pressure and flow rate at 
any point of the fire main. Pressure is regarded as what can fight a fire in the damage control 
domain and flow rate, especially flow rate at a fire main rupture, is a common and serious cause 
of flooding. 

3.3.1 Mathematical Model 
The basic equation of flow in pipe systems is as following, which is essentially an equation on 
energy conservation: 

/> +±pVi
2 + pgh{ + pghp=P2+ipV2

2 + pgh2 +Xl^/P|/2 +ZT^
2 

From the left to the right of the above equation: 

• The first term is the pressure at point 1; 

• The second term is the kinetic energy (in pressure units) at point 1; 
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The third term is the potential energy (in pressure units) at point 1; 

The fourth term is the energy provided by a pump which pushes water from point 1 to 
point 2, and hp is the head of the pump; 

The fifth, sixth, and seventh terms are the pressure, kinetic energy, and potential 
energy at point 2 respectively; 

The eighth term is the sum of all fitting loss. A fitting loss is basically a kind of 
energy loss due to flow friction caused by pipe expansion/contraction, bend, valves, 
gauges, and Tee connections. Kl is a fitting loss coefficient at a specific point 
between point 1 and point 2, and V is the flow rate at that point; 

The ninth term is the sum of all head loss caused by friction inside flow and between 
the flow and pipe wall, f is a friction factor of a segment of pipe where the pipe's 
material (coarse or smooth) and diameter are constants. L is the length of the 
segment, and D is the diameter. Since the diameter doesn't change, the flow rate in 
that segment is also a constant, which is exactly the V in this term. 

y        ^, 

-i \ 

•  ;7 

Figure 3. Basic equation for water flow in a pipe 

The companion equation is derived from the incompressibility of water. Generally, for any 
point in the pipe system, the in-flow rate and out-flow rate are the same, namely, their algebraic 
summation is 0: 

Y,VA = 0 

In order to solve the above equations for flow speed V (or flow rate Q=VA), further information 
on fitting loss coefficient Kl and friction factor fare needed. Kl is determined empirically, while 
we do have specific equations to solve f based on flow status. 

A flow may be laminar, or turbulent. The different flows have different friction factors. The 
status of flow is judged based on a constant called Reynolds that is defined as following: 
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Re = ™/ 
Y 

where 

r = . 

is the kinematical viscosity of water, /J. the dynamic viscosity. Reynolds is a physical 
parameter without unit. 

Generally if the Reynolds is greater than 2000, the flow is turbulent, else it is laminar. 2000 is 
an empirical number and may be adjusted downward if the flow is in a highly unstable 
environment (such as a ship's fire main) because disturbances such as vibration make it much 
easier to cause turbulence. Actually in this simulator we choose 1000, and that can be tuned 
based on the exact ship condition. If the flow is laminar, the friction factor can be calculated 
directly. 

But if the flow is turbulent, we need to solve an equation: 

y^ = 21og(ReV/)-0.8 

A pump on line also has an effect on the flow. A pump is described by its system curve. A 
typical system curve is as following 

Hmax 

Qmax 

Figure 4. Pump model 

where Hmax is the maximum head gain, Qmax the maximum flow rate. The system curve is a 1- 
1 correspondence between flow rate and head gain. The curve may not be quadratic, but if no 
further information is available except Hmax and Qmax, it is generally approximated by a 
quadratic equation: 
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/   c-max 

Theoretically, based on the equations described above, any pipe network can be analyzed 
numerically But for the sake of simplicity and as a comparison with those equations used in the 
flood module, we mention the Darcy-Weisbach equation here: 

This equation relates head loss to flow rate directly. Essentially it is equivalent to the basic 
equation mentioned at the beginning of this subsection. 

3.3.1.1 Numerical Method 

Equations governing the flow and pressure distribution along the fire main are nonlinear (see part 
2). The numerical algorithm we use is based on the fact that there are two criteria that a balanced 
flow in a network must satisfy: 

1. The net flow into any junction must be zero. This means the flow rate into the 
junction must equal the flow rate out of the junction. 

2. The net pressure raise/drop (or head gain/loss) around a loop must be zero. 

(Recall that in circuit theory, current and voltage also satisfy these conditions. The difference 
here is that the relationship between flow rate and pressure is nonlinear.) 

Now suppose we have a flow rate distribution satisfying condition one. If the net head loss is 
a so zero, then we're done. The flow rate distribution is balanced. If the net head loss is not zero 
along each loop, the current flow rate distribution needs to be modified. The procedure is 
essentially the same as Newton-Raphson's method in solving nonlinear equations and is 
developed as following: 

In a given loop, supposed Q0 is the balanced, natural flow rate and Q the current flow rate Let 
f(Q) be the net head loss along the loop. We have 

/(öo)-0 
By criteria 2. By Taylor's expansion, 

/(&) = /(ß) + ^(&-ß) + ... dQ 

Retaining only the first order term in the expansion, we have 
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This is a reasonable modification on current flow rate Q. 

Practically f(Q) is expressed by Darcy-Weisbach's equation and the equation of the pump's 
system curve. 

The algorithm works as an iteration until f(Q) is small enough. 

3.3.2 Data Abstraction 
In order to discuss the treatment of rupture, at first we need to clarify basic concepts in 
describing the fire main in the simulator. 

3.3.2.1 Unit/Edge of the fire main 
Basically this is a pipeline in a compartment. But in the following cases, a compartment may 
have more than one unit. 

• Pipe expansion/contraction. If two pipes of different diameter are connected in a 
compartment, they are regarded as two units. 

• Tee connection. Three pipes are connected together. Each pipe is regarded as one 
unit. 

• Pumps. If a pump's input and output pipes have the same diameter, the pump and 
these two pipes are regarded as one unit. Otherwise the input pipe is one unit, and the 
pump with the output pipe is another unit. 

• Valves and gauges. If there is a valve or gauge in a pipeline, the line is cut into two 
units. 

Combined with some topological descriptions, a unit is declared as an edge. 

3.3.2.2 Node of the fire main 
This is an end of any edge, i.e. a pipe expansion/contraction, a Tee connection, a valve, a gauge, 
or an intersection of pipe and bulkhead/deck/overhead. A node is an abstract point. 

3.3.2.3 Basic implementation of the fire main: 
We implement the fire main as an Undirected Simple Graph. 

The following figure is an example of data abstraction. 
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Figure 5. Data abstraction of rupture module 

3.3.2.4 Default flow direction 

The default flow direction in an edge is used as a reference of the real flow direction. It can be 
chosen arbitrarily, except that if an edge contains a pump, the default direction should be the 
same as the direction the pump is pushing the water. 

3.3.2.5 Reported flow rate 

This is a signed number. A positive sign means the flow is going in the default direction, and a 
negative sign means the flow is opposite the default direction. 

3.3.2.6 Default reported pressure 

This is the pressure at a node. If a node is a closed valve or any other node type with different 
pressure at different sides, each pressure will be reported separately. 

Based on the flow rate and default reported pressure, the pressure at virtually any point of the fire 
main can be predicted. 

3.3.2.7 Powered vs. Unpowered Components 

The fire main may not be a totally interconnected graph. Sometimes part of the fire main is 
disconnected from the water source (the sea) as a result of rupture or closed valves. In this case 
the isolated part is called the Unpowered Component, and is not simulated. The fire main we 
actually simulate is the components of the fire main that are connected with water sources i e 
Powered Components. ' 

3.3.3 Comments on Ruptures 

The following are two important issues related to crises. 
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3.3.3.1 Simulating ruptures 

Simulating and detecting a rupture of the fire main is a key goal of this simulator. Essentially, a 
rupture is an Air node if it is exposed in air, or a Sea node if it is immersed by water. In order to 
distinguish it from normal virtual nodes such as the water entrance of fire main or an exit like the 
fireplug, a node describing a rupture has a member called RuptureDegree indicating if it's a 
rupture. A rupture has 5 different degrees, labeled from 1 to 5. 5 means open rupture, which is 
the most serious. We add 0 as a rupture degree to indicate 'intact'. 

3.3.3.2 Detecting ruptures 

The position and degree of a rupture can be detected by this simulator based on such information 
as pressure distribution reported by pressure gauges and flow rate gauges. The more detailed the 
information reported by these gauges, the more accurate the detection. In order to find out the 
exact position and degree of a rupture, the simulator needs to know the pressure at every Tee 
connection. Therefore, the upper bound on the number of gauges is the number of Tee 
connections in the fire main. But since normally ruptures are located at the damaged part, the 
number of gauges can be reasonably reduced, and the simulator is still able to give a quite 
accurate estimation. Furthermore, by temporarily operating on some remote controlled valves, 
precious information on pressure distribution is available and it can reduce the number of gauges 
substantially. The placement of those gauges should be plotted carefully to get optimal effect. 

3.3.4 Implementation 

Some information about fire main implementation can be found in Appendix C. 

4. Simulation Computer Interface 

The simulation provides a computer interface for exporting simulation results and exchanging 
information with simulation users (in DC projects these are AI decision making modules, 3-D 
visualization module, and program test team members.) The interface includes two parts: 
MASSCOMP [Street, et.al., 2000] format sensor output and DC-SIM database information 
exchange. The database interface is implemented using open database connectivity (ODBC) 
standard exclusively. 

In this section, we discuss the computer interface. First we discuss simulation results as output 
through a MASSCOMP format sensor report and the DC-SIM database, and then discuss 
information exchange using the Event Communication Language (ECL). 

4.1    Exporting Simulation Results: MASSCOMP and the DC-SIM 
Database 

The simulation exports its result in real time. In other words, the central database mirrors 
changes in ship status based on the simulation's time report. To simplify the use of DC-SIM and 
also to speed up data reporting, MASSCOMP sensor reporting is provided in text file format. 
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4.1.1 DC-SIM Database Report 

The central database has a complete representation of the ship being simulated, including ever- 
changing ship status: compartment status and pipe network status (fire main, chill water, and 
ventilation). 

4.1.1.1 Compartment status 

Compartment status, including zone heights, zone temperatures, pressure, water height, various 
gas concentrations, and fuel information, is exported to CompartmentStatus table and ' 
CompartmentStatusTrace table for every short fixed interval. The status trace table is an 
extension of the status table along the time axis, i.e. it contains the status table's most important 
fields, plus one more field called TimeTag' to record the time. To avoid the trace table growing 
too huge, certain measures are taken not to add identical or similar information. More 
specifically, DC-SIM keeps an internal record indicating the minimum change required for a new 
record to be added. For example, if the value of the Pressure field of a record is 5000, this means 
that a pressure change of 5000 Pa in a compartment will add a new record for that compartment 
into the trace table. If no variable/field has a value change greater than the minimum change 
specified in the default record, then no new record will be added. The default internal record can 
be overridden by a special record in CompartmentStatusTrace table with CompartmentID "-2" 
(all normal compartment IDs are positive) for the user to determine the granularity of the trace 
table report. 

Reporting to CompartmentStatusTrace table is enabled only in DCA project. 

The CompartmentStatus table is updated at a fixed interval. Not all the compartments are 
updated. The simulation judges from its calculations which compartments' status have been 
changed in the last simulation interval, and exports new information to the table. The size of this 
table is fixed, and unlike the trace table, the user cannot interfere with the frequency of reporting 
to this table. 

4.1.1.2 Fire main status 

This is another important feature of ship status. The fire main simulation determines pressure and 
flow rate distribution once fire main configuration is changed, i.e. opening a valve or turning on 
a pump. The result is exported to the following tables: FireMainFlowRates, FireMainPressures, 
and FireMainRuptures. 

Among the simulation submodules there are interconnections. For example, fire main rupture can 
cause flooding. These interconnections are accomplished at the intra-simulation thread level, not 
through the database. 

The status of the chill water network and ventilation network are not included in the DC-SIM 
central database at the current time. They will be in place in the future. 

4.1.2 MASSCOMP Report 

MASSCOMP output is enabled to report sensor reading as the MASSCOMP system on the ex- 
USS Shadwell does. Text format is used to speed up the output process at run time and to 
facilitate its use without knowledge of the complicated DC-SIM Ontology being necessary. The 
following is a sample segment of the output file: 
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<SEQ=33 

TIME=0O:O0:33 

B158=19.85 

A074= 19.85 

B157=19.85 

B159=19.85 

B160=19.85 

A073=19.85 

A026=19.85 

A025=19.85 

A078=19.85 

A077=19.85 

Every segment in o is a block of sensor report at a given time. Here the time is 33 seconds since 
start of simulation. The left hand side of an entry is the sensor's channel number and the right 
hand side is its reading. For example, "A074=19.85" means that the sensor with channel number 
A074 has reading 19.85. Checking the CompartmentSensors or FiremainSensors table shows that 
the sensor is a temperature sensor and the reading is therefore in degrees Celsius. 

The granularity of control is accomplished by the same "minimum change" mechanism 
discussed in recording compartment status trace. Actually, if MASSCOMP output is enabled, 
DC-SIM will not report to the CompartmentStatusTrace table at all. Instead, it reports to the 
Sensorlnput table and the MASSCOMP format file. This is necessary because in DC-ARM, 
sensor readings can be from actual sensors on a ship, and a module other than DC-SIM will 
receive these data and put them into CompartmentStatusTrace table. Since testing the whole 
system means testing that module as well, DC-SIM must be prevented from reporting to the 
CompartmentStatusTrace table, in order to avoid collision. So, keep it in mind that in the DCA 
project, reporting to the CompartmentStatusTrace table is enabled; while in DC-ARM, it is 
not, and reporting to Sensorlnput table and MASSCOMP text file are enabled instead. 

4.2 Event Communication 
The database interface is also designed to facilitate event-driven simulation. Ideally, any change 
in ship environment should affect the simulation process, and DC-SIM is designed to get the 
change in time and reflect it in the simulation process that follows. 

The Event Communication Language (ECL) is designed for event communication among 
DCA/DC-ARM project submodules. DC-SIM uses this protocol for event communication. For 
example, an operation of a door that results in change of the door status is an event sent by some 
DC-SIM user. By monitoring the ECL table, the ECL communication center, DC-SIM can 
retrieve any simulation-related events in real time. For example, once a door status change event 
is recognized, the simulation updates the door status in its internal ship representation, and the 
following simulation is based on the new door status. 

21 



For detailed ECL protocol specification, see Appendix A: DC-SIM Ontology and Appendix B- 
Examples of Using Various Simulation Features. 

5. Simulation User Interface 

An MDI interface is used for DC-SIM. The main function of this user interface can be classified 
into three groups: parameter tuning, simulation status monitoring, and auxiliary functions. 

5.1 Parameter Tuning 
Parameter tuning is another way to communicate with the simulation. Unlike the database 
interface that mainly provides control of simulation by changing ship status, the user interface 
provides control of simulation by changing basic simulation parameters. 

As discussed before, one of DC-SIM'S fundamental assumptions is that "exact" real time 
solution of differential equations governing the underlying physical and chemical processes is 
impossible given the computational resources available and the real time ship-scale simulation 
requirement. So a conclusion is made that approximation is necessary and the simulation engines 
discussed in Section 3 are equipped with simplified algorithms with empirical parameters that 
can be tuned. The user interface provides a parameter-tuning mechanism that can convey the 
user's choice to the DC-SIM core any time after DC-SIM is launched. 

Figure 6 shows the parameter-tuning dialogs. The appropriate dialog is popped up when the user 
chooses the set of parameters they want to tune from the main menu: Simulation->Tune 
Simulation Parameters->Tune fire/flooding/... Parameters. 
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5.1.1 Tuning Fire Parameters 
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Figure 6. Fire parameter tuning dialog. This dialog shows the tunable parameters related 
to fire simulation and their default value 

Here is a brief explanation of each fire parameter. To fully understand how it works, the user 
should refer to Section 3. 

• Convection restriction factor: Bernoulli's equation is used in calculating airflow 
through an open vent. To model energy loss due to friction, restriction factors are 
used and they can be tuned here. Two coefficients are used for vertical flow to tune 
the fire's downward and upward spreading speed. Increasing the coefficients reduces 
energy lost in the form of friction and thus speeds up convection. 

• Boundary layer coefficients: These coefficients are used to in a mechanism to 
approximate the boundary layer effect (Section 3.1). Again, two coefficients are used, 
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one for the boundary layer under a deck, and the other for that above a deck. Tuning 
these two coefficients can result in the downward and upward fire spreading speed 
the user wants. Increasing these coefficients reduces the boundary layer effect and 
thus speeds up heat transfer. 

• Internal free convection coefficients: These two coefficients are used in calculating 
internal free convection, i.e., hot air up and cool air down. DC-SIM uses a two-zone 
model. Tuning these two factors can result in the zone temperature balance the user 
wants. Increasing these coefficients increases internal free convection. 

• Plume radiation: This factor determines the percentage of heat that is radiated from a 
plume. 

• Bulkhead conductivity modification: This coefficient is designed to correct bulkhead 
conductivity that affects fire spreading through bulkhead conduction. A multiplication 
correction is applied on the actual bulkhead conductivity. 

• Gas propagation factor: This is the coefficient used in calculating gasses' 
propagation by their concentration gradient. See Section 3.1 for detailed mechanism. 

• Soot propagation coefficient: This is similar to the gas propagation coefficient. 

All these factors have a preset range. Tuning a factor out of its range is not permitted. Also for 
some of the parameters it is possible that tuning the parameter to its extreme can result in 
numerical instability. 

5.1.2 Tuning Flooding Parameters 
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Figure 7. Flooding parameter tuning dialog. This dialog is used to tune an empirical 
parameter used in simulating flooding 
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The Flooding Parameter dialog has only one parameter, the flow restriction factor. This is 
similar to the restriction factors for airflow discussed above in Tuning Fire Parameters. 
Increasing the flow restriction factor decreases energy loss in friction and thus speeds up water 
flow. 

5.1.3 Tuning Fire Main Parameters 

Figure 8. Fire main parameter tuning dialog 

The Tuning Fire Main Parameters dialog also has only one parameter, the rupture fitting loss 
coefficient, which is the energy loss when water exits a pipe rupture. The fitting loss 
coefficient can be specified here. Increasing this factor increases energy loss and thus reduces 
rupture leak rate and increases fire main pressure. 

5.1.4 Casualty Control Parameters 
The casualty control parameters are also designed to be tunable but are not yet in place. 

5.1.5 Simulation Step 
The simulation step can also be tuned. Figure 9 illustrates the dialog box that shows up if the 
user chooses "Configure Simulation Step" from the "Simulation" menu. 
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Figure 9. Simulation step tuning dialog 

The simulation step (used in solving the ODE's) of the fire simulator and the flooding simulator 
can.be tuned independently in this dialog. It is not recommended to use any value that is too 
large as this may cause large errors in numerical calculation. It is recommended to use the 
smallest value possible instead. 

5.2 Simulation Status Monitoring 
DC-SM provides a status-monitoring window. Its main function is to print out the initialization 
status, current ship time, vital information for each simulator, events communicated from the 
ECLMessages table, and to report errors. Figure 10 shows a sample Screenshot 
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.^EiSstoiAfne«'flooding %105017Jutir20pD\Debug\MFShip.exe s?. 
Initialising compartment frames... 
Starting vertices... 
Initializing sides... 
Initializing walls... 
Initializing doors... 
Initializing hatches... 
Initializing scuttles... 
Initializing «all ruptures... 
Clearing trace table... 
Clearing sensor input table... 
Initializing firenain nodes... 
Initializing firenain edges... 
Initializing firenain ruptures... 
Simulating firenain in thread... 
Simulating flooding in thread... 
Sinulating fire in thread... 

| Flooding:  tine 0 
gFire:    tine 0, 8 conpartnents updated. 
(Firemain:  Algorithm converges after 42  iterations 
Total excessive uater is 0.000000 

Flooding:  tine 1 
Fire:     tine 1,  0 conpartnents updated. 

Figure 10. Simulation status monitoring 

In this sample screen shot, initialization processes are listed when they are completed. Also the 
fire main solver reported that its algorithm converged in 42 iterations in the first second of 
simulation. Flooding and fire time are also reported and they are identical. The total excessive 
water is the sum of the excessive water of every compartment (see Section 3.2 for how this 
functions), and thus provides monitoring of the effectiveness of the flooding solver. 

It is planned to move this monitoring window to the MDI interface to provide scrolling and 
saving functions. 

5.3 Auxiliary Functions 
The user interface also provides auxiliary functions. One of these is CFAST access. CFAST is a 
validated numerical simulation for building fire, a benchmark in fire simulation area. The DC- 
SIM user interface provides a tool to export the ship's data into a CFAST input file format. This 
makes it possible to run CFAST on the data of the ship being simulated. We use this method to 
complete the second step of DC-SIM validation (See Section 7.2). 

6. Scenario Generation 
The Scenario Generation module acts as a user-friendly interface for simulation. Though during 
development and testing all commands are entered by hand via the central database, it is too 
much to ask a user to do this. It is also important to provide auxiliary features like saving, 
commenting and loading a scenario. 

The scenario generation is currently still under development, though the majority part of the 
work has been done. The following is a simple introduction. 
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6.1 Installation 

The Illinois Crisis Simulator Scenario Generator (ICSSG) consists of four files that need to be in 
the same directory. They are as follows: 

• ScenLauncLexe        Run this program to start the Scenario Generator. 

• MFShip.exe This is the ship simulator. The Scenario Generator runs scenarios 
on it. 

• ScenGen.dll This is the actual program where future modifications will be 
made. 

• SimInfo.mdb This is the scenario information database. It stores previously 
created scenarios and their events. 

ICSSG also needs two ODBC System DSNs configured in order to run properly. You need a 
DSN named Shadwell pointing to a ship database. This is generally a SQL Server connecting to 
an ARM database. The second DSN is named RINFO. It needs to point to the SimInfo.mdb in 
your ICSSG directory, 

6.2 Interface 

6.2.1 Main Menu 

Upon running ScenLaunch.exe you will be greeted with the Main Menu shown in Figure 11. 
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Illinois unit Simulator 

Welcome.to.the Hoots Crisis Simulator. Please select one '•; 
'.".:.>ormofepimiary;crisis and a difficulty level  /.syoudoso, 

.the list on the right will reflect your choices. Click on a 
» scenario name to highlight &., Then click on a button to '/    " 

View, Modify. Rename. Rectassify. Delete, or Run the 
scenario   You may also create a scenario from scratch 
Wl.es choosing to run the scemno, u;e Lr»e Emulation ti. 

■" be able to add events during the simulation 

:.;rv*c jfoi'r-Prirnary Crisis '■ j 

1- 
Xf'stlSmol • 

' I-»Flooding/ Fireniain 

J~: Structural Change 

-Difficulty Level' 

41 

Illinois Crisis Simulator 
&SSlfÄ 

There 'are 'currently not any scenarios of that type 
Please,choose another Primary Crisis or Difficulty./. Create a Hew 

■ Scenario 

1 Run with Li +1Q 

„+4 

View Scenario' 
.4-5 

\   .-  Modify 
f" •     Scenario 

+6 

L      Rename/ 
■■       Reclasrifyj 
:       Scenario 

Delete 
Scenario 

|7'i 

%8\ 

i Run 
Mt 

Figure 11. Scenario generation main menu 

1. Primary Crisis - Select what types of events 
occur in the scenario. 

2. Difficulty Level - Select the number of 
events in the scenario. 

3. Scenario List - Listing of scenarios in the 
database that match criteria to the left.* 

4. Create a New Scenario - Go to the scenario 
creation tool. 

5. View Scenario - View the events of the 
currently selected scenario. 

6. Modify Scenario - Modify the events of the 
currently selected scenario. 

*You may also double-click any scenario listed 
scenario. 

7. 

8. 

Rename/Reclassify Scenario - Change the 
name or the classification of the currently 
selected scenario. 
Delete Scenario - Remove a scenario from 
the database permanently. 
Quit-Exit ICSSG. 

10. Run with Live Emulation - Edit a scenario 
while it is running (for future version). 

11. Run - Start the simulator with the events of 
the currently selected scenario. 

in this window to view the contents of that 

29 



6.2.2 Create/Modify Menu 

Illinois Crisis Simula to 
■:Pkase select an event and SB m the other drop-down bora. Then ckk Add Event to : 

add the event to the scenano. You may also highlight an event on the right and dick - 
on Remove Eventto remove % event from the scenario/ Click OK to' swe the 

1L 
2 

Structural & Misc Systems I 

fie Fighting Systems ^   Ignite Fire 

C. Change Fire Main Plug' 

r^CUnge Fire M<iai Pun^i 

C.Change_ fat Main Valve 

Compartment Contents 

Fire Main&Chie'd Water 

P^Rupture Fire Main Pipe! 

r CJ.äT<:r cii 

C C;;-nc^ C!i 

K Hurup 

br Vivt 

w ;-IK 

3- 
ff(p*isiiiitii 

At   ^ 

Select FM 
■      Pipe ID 

Area of 
Rupture 

-': i'i/^Cancelj: 

~2]   M ihiätesml d Seconds 

1 

I 

TjmeJ _pesc_rip_t>on_ |_C^mp_armer!t_MD_ 

T """"    Remove Eve t6-\ Add Event 

P 
w 

si 

-8 7r lOlfr 

Figure 12. Scenario generation create/modify menu 

1. Event Categories - Click on a tab to list 
events of the selected type. 

2. Event Types - Click on an event type to fill 
in information about it. 

3. Event Information - Fill in the information 
for the event you desire to create.* 

4. Event Listing - List of events in current 
scenario. 

* Different events need different information, 
may only have 2-4 selections. You need to fill 
event. 

8. 

Remove Event - Highlight an event and click 
this button to remove it. 
Add Event - Fill in the information on the 
left and click this button to add the event to 
the scenario. 
OK - Click when finished adding/removing 
events to save the scenario. 
Cancel - Click to cancel any changes made 
and to return to the main menu 

Some will have dropdown boxes while others 
in or choose all options before you may add the 
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6.2.3 Save/Rename/Reclassify Window 

Illinois Crisis Simulator 
§M 

Illinois Crisis Simulator 

".■'. The „default name for this scenario based on its events is shown below. 
.7 Youjtnay reclassify or change the name if you desire.   Click on Save to 
• saveifhe scenario with the currently set options. 

--■-," ri±\' ■• 

^^^^^ary^ri sis —;  p Difficulty Level 1 
'<-.** t ' '       -K ■! 

^.FFireYiSmoke 

^IvLji Flooding'/ Firemain- 

RlStructural Change 

2- r 2 j 

\r. 3 

m 
FüeTname: FireFloodStructure Difficultl  51000009 

4± Cancel 5-E Save 

Figure 13. Scenario generation save/rename/reclassify window 

1. Primary Crisis - Select what types of events 4.  Cancel - Click to cancel saving, renaming, or 
occur in the scenario.* reclassifying the scenario. 

2. Difficulty Level - Select the difficulty rating 5.  Save - Click to make your changes 
of the scenario. permanent. 

3. File Name - Choose a name for the scenario. 

* The Save box will fill in classification information and a generic name based on what events 
are included in the scenario the first time that you save a scenario. You may change any 
classification information and rename the scenario if you desire. 
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6.2.4 View Window 

Illinois Ciisis Simulator 

»«101   . . lUiiWjsßrisis Simulator 
Time | Description Comparment / ID 
02:02 Hood in Compartment 02-23- 1-Q (Data Handling Room) 
02:02 Set Temperature to 20. 02-23-1 -Q (Data Handling Room) 
02:02    Fire m Compartment      02-25-0-Q (Technical Director Pantry) 

1 

JJ: 

kp- 

This list shows the events 
mat will occur in the 
currently'selected 
scenario.' To modify the 
events, click OK/then   ** 
click Modify'Scenario on 
the previous screen 

2± OK 

Figure 14. Scenario generation view window 

1. Event List - This is a listing of the events in      2.  OK - Click to return to the main menu 
the scenario. 
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6.2.5 Delete Confirmation 

Illinois Crisis S imuiatot 

I       fy Illinois Crisis Simula tön 

Are you sure you would like to completely delete 
the following scenario? 

^•ple name: FirenoodStructure_Difficultl_5100000 

■    ;       Cancel i2    3 OK 

Figure 15. Delete confirmation 

1. File Name - This is the name of the file about    3.  OK - Click to permanently delete the 
to be deleted. scenario listed. 

2. Cancel - Click to cancel deletion and return 
to the main menu. 

6.3 Tutorial - Creating a Scenario 

The following will instruct you how to create a fire simply by increasing the temperature of a 
compartment. 

1. Start ICSSG by running ScenLaunch.exe. 

2. From the main menu, click on Create a New Scenario. 

3. From the create menu, click on the Compartment Contents tab. 

4. Click on Change Temperature. 

5. For the time, select 0 in the minutes box and 25 in the seconds box by using the drop- 
down boxes. 

6. Select compartment 02-23-1-Q (Data Handling Room) from the Select Compartment 
box. 

7. Select a temperature of 700 in the select temperature box. 

8. Next, click on Add Event. It should show up in the Event Listings box. 

9. Click on OK. This will bring up the save box. 
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10. Rename the scenario by selecting and deleting the given filename. Type Tutorial 
Scenario in the fdename box. 

11. Reclassify the scenario by unchecking the Structural Change box and checking the 
Fire/Smoke box. (Do this by clicking once on the name or the box next to the name). 

12. Leave the difficulty set to 1. 

13. Click on Save to save the scenario into the database and return to the main menu. 

14. By changing the Primary Crisis and Difficulty to Fire / Smoke and 1, you will see a 
listing of scenarios falling under this category. Tutorial Scenario will be listed. Click on 
it to highlight it and click on any other main menu option to perform that option on the 
scenario. 

6.4 Limitations 

Currently ICSSG has many fields that have been grayed out and are unselectable. None of these 
are fully implemented by the simulator hence you may not select them. As the simulator gains 
functionality, so too will the scenario generator. The current list of future systems and 
functionality is as follows: 

• AFFF fire-fighting system 

• HFP fire-fighting system 

• Water mist fire-fighting system 

• Chilled water system 

• Electrical system 

• Ventilation system 

• Compartment gas/smoke contents 

• Compartment fuel contents 

As the systems come online, you will be able to manipulate various aspects of the systems (e.g., 
rupture pipes or change valve status). 

7. Validation of Existing Functions 

This project's validation is twofold. First, we need proof of DC-SIM'S capability of 
accommodating DCA and DC-ARM requirements discussed in Section 1. Secondly, we want to 
know how well DC-SIM is as an independent ship damage control simulator. 

34 



7.1 Fulfilling DCA/ARM Requirement 
DC-SIM has been used as the simulator for DC-TRAIN and DC-ARM systems. Its capability 
hasn't been fully revealed by the date this document is prepared. DC-TRAIN has been used at 
SWOS but the feedback is inadequate, and a demo for DC-ARM was scheduled but could not be 
completed due to funding constraints. However, based on lab testing of DC-SIM in these two 
projects, DC-SIM can provide reasonable fidelity and true real time response. In the next section 
we will provide a more rigorous comparison of DC-SIM with CFAST, a well-established fire 
simulator developed by the National Institute of Standards and Technology (NIST). 

7.2 Comparison with CFAST Simulation 
A detailed comparison is in Appendix D, 

8. Extension of Existing Functions 

Despite DC-SIM'S real time, environment interactive, and ship-scale simulation nature, it still 
provides much room for future extension. One example is to develop it into a hyper-real time 
predictor for crisis propagation. This is a very useful feature for AI decision-making processes 
used in THE DC-ARM project. 

8.1 Hyper-real time prediction 
As discussed before, an explicit model of the underlying physical and chemical processes can 
always be beneficial to AI modules. Basically the predictor can be used in this way: Upon 
identification of a crisis, say, a fire, the predictor can be called to guess the trend of fire 
propagation based on the current ship status and even counting in possible casualty control 
measures. 

The main requirement of this extension is to provide hyper-real time performance, which means 
to simulate real world events at a speed hundreds of times faster. Based on the current DC- 
SIM'S performance on a Dell PC with dual 400MHz CPU, real time performance can be 
maintained when less than 300 compartments are being simulated. This is not very fast at first 
glance. But since the current DC-SIM interfaces other modules in DC projects every second, that 
occupies the majority of system time, and a hyper-real time predictor wouldn't have this 
requirement. Thus we are confident that the speed requirement can be reached if we further 
restrict the number of compartments to be simulated, i.e. to restrict the prediction locally. Since 
in most cases the prediction is short term, locality restriction doesn't affect prediction fidelity. 

The predictor can work in this way: 

Input: 

• Current ship status including crisis source; 

• Event sequence specifying what will happen in ascending time order; 
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• One or more stop criteria; 

Output: 

• Time and ship status when stop criteria is met; 

• Trace of ship status from initial state to stop state; 

The event sequence can contain possible casualty control measures taken. Several predictions 
can be launched at the same time with difference event sequences for comparison purpose. This 
is very meaningful for resource management in case multiple crises are present and only limited 
resources are available. 

A stop criterion can be a time span (say 30 minutes), a certain event (say ignition of engine 
room), or both. 

The implementation of this function is simple. Since DC-SIM has CShipStructure as its 
representation of a ship's status, the hyper-real time predictor is just a copy of the simulation 
engine running on a CShipStructure object without real-time timing (the multimedia timer). 

9. Conclusion 

Based on the design procedure and testing results, we believe that DC-SIM has fulfilled its initial 
design purpose, and succeeded in providing a general framework for future expansion. It also 
sheds light on an alternative method of simulating complex physical processes using a simplified 
model structure and parameter tuning. Future work could exploit the structure DC-SIM provides 
to see how simulation fidelity and computation speed can benefit. 
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Appendix A: DC-SIM Ontology 

This is the specification for those parts of knowledge ontology used by DC-SIM. It is a subset of 
the Knowledge Ontology developed for the overall DC-SCS [Wilkins, et al, 2000b]. 
Additionally, this section contains illustrations related to DC-SIM. 

A.l Basic Terminology 
Bow 

The bow is the front of the ship. 

Stern 

The stern is the back of the ship. 

Fore/Forward 

When you're standing on the ship, fore is toward the bow. Fore is a direction, not a location. 
Fore is the opposite direction from aft. 

Aft 

When you're standing on the ship, aft is toward the stern. Aft is a direction, not a location. Aft 
is the opposite direction from fore. 

Port 

When you're standing on the ship facing the bow, port is to your left. If you're facing the stern, 
port is on your right. Port is a direction relative to the ship's orientation, as in "Hard [turn] to 
port!" Port is the opposite direction from starboard. (Having trouble remembering this? Notice 
that "port" and "left" both have four letters.) 

Starboard 

When you're standing on the ship facing the bow, starboard is to your right. If you're facing the 
stern, starboard is on your left. Starboard is a direction relative to the ship's orientation, as in 
"Hard [turn] to starboard!" Starboard is the opposite direction from port. 

Waterline 

Like many others, the DDG51 class of ship is expected to float on the water during normal 
operation. The waterline is where the top of the water meets the ship. 

Global coordinate 

A global coordinate system is set up on the ship for location identification. The z-axis is upward, 
x to bow and y to starboard. The origin is not specified by this ontology. 
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A.2 Static Ship Structure and Chemical Properties 
This section includes tables describing a ship's basic static structure like compartments, 
bulkheads and vents. 

A.2.1 Compartment Content 
Name* 
CompartmentID 
ContentID 
ContentAmount 
SuppressedAmount 

Type 
Number (Long) 
Number (Integer) 
Number (Single) 
Number (Single) 

Size Notes 
Foreign key on Compartments 

*Used by Simulation during initialization. 

ContentID is the identification of content type. Its property can be found in tables 
FuelDescription and ReactionProperties. ContentAmount is the amount of content, and 
SuppressedAmount the amount of fuel having been suppressed. Normally, when the simulator is 
started the SuppressedAmount is 0. But if the simulator resumes a simulation that has been 
interrupted or executes a simulation based on a pre-existing status, then this amount can be 
positive. SuppressedAmount is counted in ContentAmount. 

A.2.2 Compartments 
Each compartment is identified by deck, frame, position, and type. This table translates between 
several compartment identification schemes. "Bogus" compartments are those that do not exist 
on the DC plates: they are used either to enable visualization to draw elements like the ship's 
antenna, or to model elements such as the outside environment. 

Name* 
CompartmentID 
Name 
Deck 
Frame 
Position 
Type 
Description 
KBSName 
IsBogus 

TyPe 

Number (Long) 
Text 
Number (Long) 
Number (Long) 
Number (Long) 
Text 
Text 
Text 
Yes/No 

Size 
4 
50 
4 
4 
4 
1 
100 
50 
1 

Notes 
Serial number 
Full Navy ID (i.e. 01-110-01-Q) 
KBS Deck number (i.e. -1) 
KBS Frame number (i.e. 110) 
KBS Position number (i.e. 100) 
Type designator (i.e. Q) 
(i.e. Tech Library Annex) 
Full KBS ID (i.e.-1-110-100) 
Marks "fake" compartments 

*Used by Simulation during initialization. 

The simulation doesn't use position information for compartments. For simulation the only 
significant information provided by this table is the ID and name of the compartments. 
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A.2.3 Doors 
This table characterizes the doors on the ship with regard to their position within the containing 
bulkhead. Doors with type -1 are internal to a compartment; other doors connect compartments. 

Name* Type Size Notes 
DoorlD Number (Long) 4 Serial number 
WalllD Number (Integer) 2 Foreign key on Walls 
CenterX Number (Integer) 2 
CenterY Number (Integer) 2 
CenterZ Number (Integer) 2 
Width Number (Single) 4 [ft] 
Height Number (Single) 4 [ft] 
Name Text 50 Canonical Navy ID 
Type Number (Long) 4 (see DC Plate 3) 

*Used by Simulation during initialization. 

Doors can be seen as yellow spheres in the ship visualization. 

WalllD is the identification of the bulkhead that contains the door. CenterX, CenterY and 
CenterZ are the coordinates of the door's center based on the global coordinate system. Width 
and Height describe the door's dimensions. 

A.2.4 Fire Main Nodes 
The fire main is modeled as an undirected graph; this table describes the nodes of the fire main. 
A node is anything that can affect flow within the fire main system: valves, junctions, 
narrowings, widenings, gauges, and pumps, for instance. The handle fields are used to describe 
certain kinds of connection info, as any given node may only be the endpoint of at most three 
edges. So an end node, like a sprinkler, will only connect to one edge; this edgelD is stored in 
HandleOne. A node connecting two edges (such as an elbow joint) will have values for 
HandleOne and HandleTwo. For a node incident to three edges (such as a T-junction), all three 
handles will contain the ID's of the incident edges. Any unused handles will contain -1 as their 
value. 

Name* Type Size Notes 
NodelD Number (Long) 4 Serial number 
X Number (Single) 4 
Y Number (Single) 4 
Z Number (Single) 4 
HandleOne Number (Long) 4 Foreign key on FireMainPipes 
HandleTwo Number (Long) 4 Foreign key on FireMainPipes 
HandleThree Number (Long) 4 Foreign key on FireMainPipes 
InSea Yes/No 1 
CompartmentID Number (Long) 4 Foreign key on Compartments 
VertexType Text 50 Describes the nature of node 
Name Text 50 1 Navy ID (valves only) 

*Used by Simulation during initialization. 
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X, Y and Z are the coordinates of the node. Handles indicate the incident edges (pipe or pump) 
There can be up to three incident edges. The check box InSea indicates if the node is immersed 
in water or not. Seawater intake is surely in sea. But an open node in a flooded compartment can 
also be in sea. CompartmentID identifies the compartment where the node is located. 

The NodelDs form a continuous range, including valves, fire plugs, and pressure sensors. 
Specific nodes like valves appear in individual tables, but they are also included in this table. 

A.2.5 FireMainPipes 
This table lists the edges of the fire main graph. 

Name* 
PipelD 
HeadNodelD 
TailNodelD 
CompartmentID 
Diameter 

Type 
Number (Long) 
Number (Long) 
Number (Long) 
Number (Long) 
Number (Single) 

Size 
4 
4 
4 
4 
4 

Notes 
Serial number 
Foreign key on FireMainNodes 
Foreign key on FireMainNodes 
Foreign key on Compartments 
[ft] 

*Used by Simulation during initialization. 

A pipe is directional: from tail node to head node. Pipes, together with the fire main pumps, form 
the edges of the fire main directional graph. 

A.2.6 FuelDescription 
This table is used to hold important information about the different types of fuel that would be 
present on the ship. 

Name* Type Size Notes 
Identifier 
FuelName 

Number (Integer) 
Text 

2 
50 

Foreign key on ReactionProperties 

UnitFuelConsumingRate 
CompleteFuelHeatCapacity 
IncompleteFuelHeatCapacity 
FuelBasicSootCapacity 
FuellncompleteSootCapacity 
MolarMass 

Number (Double) 
Number (Double) 
Number (Double) 
Number (Double) 
Number (Double) 
Number (Double) 

8 
8 
8 
8 
8 
8 

Kg/s 
J/kg 
J/kg 
Kg 
Kg 
Kg 

*Used by Simulation during initialization. 

This is not really part of the ship structure, but is instead the fuel's chemical properties. Identifier 
is the ID used in table CompartmentContent and ReactionProperties. UnitFuelConsumingRate is 
the normal consumption rate of a unit (1 kg) of fuel if it is ignited. This is a rough estimation of 
combustion since strictly the speed is not a constant. CompleteFuelHeatCapacity indicates how 
much heat is released by burning one unit of fuel under complete combustion, and 
IncompleteFuelHeartCapacity how much is released under incomplete combustion. 
FuelBasicSootCapacity indicates how much soot is released by burning one unit of fuel under 
complete combustion, and FuellncompleteSootCapacity how much is released under incomplete 
combustion. 
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A.2.7 Hatches 
Hatches are openings in decks and overheads; this table is otherwise identical to the Doors table. 

Name* Type Size Notes 
HatchID Number (Long) 4 Serial number 
WalllD Number (Integer) 2 Foreign key on Walls 
CenterX Number (Integer) 2 
CenterY Number (Integer) 2 
CenterZ Number (Integer) 2 
HatchWidth Number (Single) 4 [ft] 
HatchHeight Number (Single) 4 [ft] 
Name Text 50 Canonical Navy ID 
Type | Number (Long) 4 (see DC Plate 3) 

*Used by Simulation during initialization. 

WalllD is the identification of the deck that contains the hatch. CenterX, CenterY and CenterZ 
are the coordinates of the hatch's center based on the global coordinate system. Width and 
Height describe the hatch's dimensions. 

A.2.8 ReactionProperties 
This Table is used to describe the chemical properties of certain reactions, and is used in 
conjunction with the FuelDescription table to accurately simulate anything involving fuel. 

Name* Type Size Notes 
ReactionID Number (Long) 4 
Description Text 50 
ReactionType Text 50 
o2 Number (Single) 4 
C02 Number (Single) 4 
CO Number (Single) 4 
H20 Number (Single) 4 
S02 Number (Single) 4 
SOOT Number (Single) 4 
HEAT Number (Single) 4 
Key Number (Long) 4 Serial number 

*Used by Simulation during initialization. 

Like FuelDescription, this table describes chemical properties. A record of the table actually 
describes a chemical reaction equation. ReactionID is the ID of the combustible (the same as 
ContentID in CompartmentContent table and Identifier in FuelDescription table). The values of 
02, C02, CO, H20 and S02 indicate the coefficient of the reaction equation: negative for reactant 
and positive for product. The coefficients are normalized by letting the combustible's coefficient 
be 1. SOOT and HEAT are similar to those described in table FuelDescription, and are actually 
not used by the simulation. 
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A.2.9 Scuttles 
Scuttles are circular openings within hatches. 

Name* Type Size Notes 
ScuttleED Number (Long) 4 Serial number 
WalllD Number (Long) 4 Foreign key on Walls 
Name Text 50 Navy name for scuttle 
CenterX Number (Single) 4 
CenterY Number (Single) 4 
CenterZ Number (Single) 4 
Radius Number (Single) 4 [ft] 
HatchID Number (Long) 4 Foreign key on Hatches 

*Used by Simulation during initialization. 

WalllD identifies the deck that contains the scuttle. CenterX, CenterY and CenterZ are the 
coordinates of the scuttle's center based on the global coordinate system. Radius is the scuttle's 
radius. HatchID identifies the hatch that contains the scuttle. 

A.2.10    Sides 
A side (one face of a bulkhead) is made of four vertices, listed in counterclockwise order with 
respect to their parent compartment. In particular, with a vertical side, vertices 2 and 3 will be 
the top vertices. Sides of type 0 are overheads, type 1 are decks and type 2 are vertical sides. 

Name* Type Size Notes 
SidelD Number (Long) 4 Serial number 
VertexIDl Number (Long) 4 Foreign key on Vertices 
VertexID2 Number (Long) 4 Foreign key on Vertices 
VertexID3 Number (Long) 4 Foreign key on Vertices 
VertexID4 Number (Long) 4 Foreign key on Vertices 
SideType Number (Long) 4 Ceiling, floor, side 
Level Number (Long) 4 Level number 
CompartmentID Number (Long) 4 Foreign key on Compartments 

''Used by Simulation during initialization. 

A.2.11    Vertices 
Lists all of the vertices in the ship. 

Name* 
VertexID 
X 
Y 
Z 

Type 
Number (Long) 
Number (Single) 
Number (Single) 
Number (Single) 

Size 

"Used by Simulation during initialization. 

Notes 
Serial number 
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A.2.12    Bulkheads 
Each bulkhead is composed of two sides. In some cases, the same compartment is on both sides 
of the bulkhead; these bulkheads are visualization artifacts. For horizontal bulkheads, the first 
side is always the overhead and the second is the deck. 

Name* Type Size Notes 

WalllD Number (Long) 4 Serial number 

SidelDl Number (Long) 4 Foreign key on Sides 

SideID2 Number (Long) 4 Foreign key on Sides 

CompartmentlDl Number (Long) 4 Foreign key on Compartments 

CompartmentID2 Number (Long) 4 Foreign key on Compartments 

Thickness Number (Single) 4 [units] 

Material Text 50 
WallType Number (Long) 4 
OpeningType              | Number (Long) |4 | 

*Used by Simulation di uring initialization. 

SidelDl is the ID of side 1 which is in the compartment with ID ComparmtentlDl. Similarly 
SideID2 is the ID of side 2 for CompartmentID2. 

A3 Dynamic Ship Status 
This section includes tables describing aspects of ship status that can change. 

A.3.1 CompartmentStatus 
Lists the current physical status of each compartment. 

Name* Type Size Notes 
CompartmentID Number (Long) 4 Foreign key on Compartments 
LowerZoneHeight Number (Single) 4 [feet] 
UpperZoneHeight Number (Single) 4 [feet] 
LowerZoneTemperature Number (Single) 4 [Kelvin] 
UpperZoneTemperature Number (Single) 4 [Kelvin] 
Pressure Number (Single) 4 [pascals] 
02Concentration Number (Single) 4 [mol/m3] 
FireStatus Text 50 Ignited, engulfed, destroyed, extinguished, intact 
FuelAmount Number (Single) 4 [kg] 
SootDensity Number (Single) 4 [kg/m3] 
WaterDepth Number (Single) 4 [meters] 
FloodingStatus Text 50 Intact, flooded 
C02Concentration Number (Single) 4 [mol/m3] 
COConcentration Number (Single) 4 [mol/m3] 
HFConcentration Number (Single) 4 [mol/m3] 
HCLConcentration Number (Single) 4 [mol/m3] 
HB rConcentration Number (Single) 4 [mol/m3] 
CombustibleFuelAmount Number (Single) 4 [kg] 

*Used once per second by Simulation to report ship status. 
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A.3.2 CompartmentStatusTrace 
Tracks "important" changes to the CompartmentStatus table. For notes on the column values, see 
the CompartmentStatus table. Note that a '-2' value for CompartmentID marks a special 
'parameters entry'. 

Name* Type Size Notes 
TracelD Number (Long) 4 Serial number 
TimeTag Number (Long) 4 
CompartmentID Number (Long) 4 Foreign key on Compartments 
LowerZoneHeight Number (Single) 4 
LowerZoneTemperature Number (Single) 4 
UpperZoneTemperature Number (Single) 4 
Pressure Number (Single) 4 
FireStatus Text 50 
FloodingDepth Number (Single) 4 [meters] 
SmokeDensity Number (Single) 4 

*Used by Simulation to record simulation history. 

The unit of SmokeDensity can be different from that of SootDensity in the CompartmentStatus 
table. 

A.3.3 DoorStatus 
Lists whether each door on the ship is open or closed. 

Name1' 
DoorlD 
IsOpen 

TyPe 

Number (Long) 
Yes/No 

Size 
4 
1 

Notes 
Foreign key on Doors 

*Used by Simulation during status changes. 

A.3.4 FireBoundaries 

This table describes fire boundaries set by damage control. 

Name* 
Set 
SidelD 

Type 
Number (Long) 
Number (Long) 

Size Notes 
Set # this belongs to 
Foreign key on sides 

*Used by Simulation during status changes. 

Fire boundaries are grouped into sets. A set contains several bulkheads on which a fire boundary 
should be set. 
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A.3.5 FireMainHoses 
Lists additional hose added to the fire main. 

Name* Type Size Notes 
FirePluglD 
Diameter 
Length 
DestCompartmentID 
Removed 

Number (Long) 
Number (Single) 
Number(Single) 
Number(Long) 
Yes/No 

4 
4 
4 
4 
1 

Foreign key on FM pipes or pumps 
[foot] 
[foot] 
Foreign key on Compartments 
Removed or not 

*Simulation uses this table to gain information on adding/removing a hose. 

A hose always originates at a fireplug, and ends at some compartment to which it directs water. 

A.3.6 FireMainFlowRates 
Shows current flow rates in the fire main (FM). 

Name* Type Size Notes 
EdgelD 
FlowRate 

Number (Long) 
Number (Single) 

4 
4 

Foreign key on FM pipes or pumps 
[gal/minute] 

*Used by Simulation once per FM solving -> per FM structure change. 

A.3.7 FireMainPlugs 
Lists the status of plugs in the fire main system. 

Name* Type Size Notes 
PlugID 
IsOpen 

Number (Long) 
Yes/No 

4 
1 

Foreign key on FireMain(New)Nodes 

*Used by Simulation during initialization and change of plug status. 

A.3.8 FireMainPressures 
Lists the pressure at each fire main node. 

Name* Type Size Notes 
NodelD 
Handle 
Pressure 

Number (Long) 
Number (Long) 
Number (Single) 

4 
4 
4 

Foreign key on FireMain(New)Nodes 
Foreign key on FireMain(New)Pipes 
[psi] 

''Used by Simulation during status changes (same as FireMainFlowRates). 
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A.3.9 MainPumps 
Lists the status of fire main pumps. 

Name* 
PumpID 
MaximumFlowRate 
MaximumHeadGain 
TailNodelD 
HeadNodelD 
Status 

PowerLevel 
CompartmentlD 
IsOn 
Name 

TyPe 

Number (Long) 
Number (Single) 
Number (Single) 
Number (Long) 
Number (Long) 
Text 

Number (Single) 
Number (Long) 
Yes/No 
Text 

Size 
4 
4 
4 
4 
4 
50 

4 
4 
1 
50 

Notes 
Foreign key on FireMain(New)Pipes 
[gal/minute] 
[psi] 

On, off, standby, overheating, damaged, 
destroyed. 
[percentage] 
Foreign key on Compartments 

Pump number 

*Used by Simulation during status changes and initialization. 

The pump's characteristics are modeled as a quadratic curve with parameter MaximumFlowRate 
and MaximumHeadGain. 

A.3.10    FireMainRuptures 
Lists fire main ruptures formed during simulation. 

Name* Type Size Notes 
RupturelD 
PipelD 
Position 
CrackWidth 
CrackLength 
LeakRate 
Patched 

Number (Long) 
Number (Long) 
Number (Single) 
Number (Single) 
Number (Single) 
Number (Single) 
Yes/No 

4 
4 
4 
4 
4 
4 
1 

Serial number 
Foreign key on FireMain(New)Pipes 
Offset from pipe tail [ft] 
[ft] 
[ft] 
[gal/s] 
Has it been patched or not 

*Used by Simulation during status changes and initialization. 

The rupture is modeled as an open mouth. CrackWidth is the maximum distance between the two 
lips, and CrackLength is the perimeter of the opening. Upon solving the fire main, the leak rate is 
reported here. RupturelD is an auto number. In order to specify a rupture, this ID should be used 
instead of PipelD. By doing this we disallow setting more than one rupture on a single pipe. 
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A.3.11    FireMainValves 
Lists the current status of each valve on the ship. 

Name* 
ValvelD 
IsOpen 
IsRemoteControllable 
Status 

Type 
Number (Long) 
Yes/No 
Yes/No 
Text 

Size 
4 
1 
1 
50 

Notes 
Node identifier 

Navy status code 

♦Used by Simulation during status changes and initialization. 

A.3.12    HatchStatus 
Lists whether each hatch on the ship is open or closed. 

Name* 
HatchID 
IsOpen 

Type 
Number (Long) 
Yes/No 

Size Notes 
Foreign key on Hatches 

*Used by Simulation during status changes and initialization. 

A.3.13    ScuttleStatus 
Lists whether each scuttle on the ship is open or closed. 

Name* 
ScuttlelD 
IsOpen 

Type 
Number (Long) 
Yes/No 

Size Notes 
Foreign key on Scuttles 

♦Used by Simulation during status changes and initialization (same as HatchStatus). 

A.3.14    WallRuptures 
Lists bulkhead ruptures formed during simulation. 

Name* Type Size Notes 
RupturelD 
WalllD 
Height 
RuptureArea 
RuptureClass 

Number (Long) 
Number (Long) 
Number (Single) 
Number (Single) 
Text 

4 
4 
4 
4 
50 

Serial number 
Foreign key on Walls 
[m] from deck to center of rupture 
[ft2] 

*Used by Simulation during status changes and initialization (once per rupture added). 

RupturelD is the one use to specify a rupture via ECL. So it is possible to set more than one 
rupture on a single bulkhead. 
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A.4 DC-ARM Specific Tables 
Some tables are DC-ARM specific. They are included in this section. Based on the different 
structure of Ontology, DC-SIM also has two different versions, to deal with DC-ARM specific 
features. 

A.4.1 CompartmentSensors - Static 

This table lists for each sensor its location, its channel number, and the compartment it is in. 

Name Type Size Notes 
SensorlD 
SensorType 
X 
Y 
Z 
Channel# 
Location 
Compartment 

Number (Long) 
Text 
Number (Single) 
Number (Single) 
Number (Single) 
Text 
Text 
Number (Long) 

4 
50 
4 
4 
4 
50 
50 
4 

Serial number 

Canonical name 
Foreign key on compartments 

This table is used by Simulation if sensor output is enabled. 

X,Y, and Z are the coordinate of the sensor. Channel# is the MASSCOMP channel number for 
the sensor. SensorType indicates what kind of sensor it is. This can be, for instance, 
UpperZoneTemperature, O2 or Obscuration. 

A.4.1 FireMainSensors - Static 
This table lists the fire main sensors and their locations. 

Name Type Size Notes 
SensorlD 
SensorType 
X 
Y 
Z 
Channel# 
Location 
CompartmentlD 
PositionID 

Number (Long) 
Text 
Number (Long) 
Number (Long) 
Number (Long) 
Text 
Number (Long) 
Number (Long) 
Number(Long) 

4 
50 
4 
4 
4 
50 
4 
4 
4 

Serial number 
Abbreviation of type of sensor 

Canonical location on ship 
Foreign key on compartments 
Foreign key on PipelD, NodelD, or 
PumpID 

This is the same as CompartmentSensors except that the additional field PositionID indicates the 
position of the sensor on fire main network. For a pressure sensor, the position ID is a node ID, 
and for a flow rate sensor, it is a pipe ID or pump ID. 
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A.4.2 Sensorlnput - Dynamic 
This table is used to track the different values the sensors give over the course of a simulation. 

Name Type Size Notes 
Serial 
TimeStamp 
CompartmentID 
SensorType 
Value 

Number (Long) 
Number (Long) 
Number (Long) 
Text 
Number (Single) 

4 
4 
4 
50 
4 

Serial number 
Time the sensor is giving information 
Foreign key on Compartments 

Information from sensor 

When sensor output is enabled, the simulation reports sensor readings to this table. 

A.5 ECL Communication Language 
The tables in this part deal with ECL communication. 

A.5.1 ECL Grammar 
A machine-readable grammar for ECL (Event Communication Language) messages. 

Name Type Size Notes 
Number Number (Long) 4 Message number 
Message Memo - Description 
Parameters Memo Argument 
Example Memo - Example text 
Grammar Memo - Composition 
ParameterExample Memo Parameter desc. 

This table just explains each ECL command. 
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A.5.2 ECL Messages 
All communications between modules occurs in this table. 

Name Type Size Notes 
Serial Number (Long) 4 Serial number 
ECLNum Number (Long) 4 Message number 
Timestamp Number (Long) 4 Timestamp 
To Text 50 Addressee 
From Text 50 Sender 
Problem Text 50 Parameter 1 
System Text 50 Parameter 2 
Alarm Text 50 Parameter 3 
Status Text 50 Parameter 4 
Adjective Text 50 Parameter 5 
Compartment Text 50 Parameter 6 
Stringl Text 50 Parameter 7 
String2 Text 50 Parameter 8 
Numl Number (Long) 4 Parameter 9 
Num2 Number (Long) 4 Parameter 10 
Saft Number (Long) 4 Parameter 11 
Paft Number (Long) 4 Parameter 12 
Pfor Number (Long) 4 Parameter 13 
Sfor Number (Long) 4 Parameter 14 
Above Number (Long) 4 Parameter 15 
Below Number (Long) 4 Parameter 16 

Simulation receives commands on ship status change via this table exclusively. For detailed 
usage, refer to Appendix B. 

A.5.3 ECL Language Usage: 
This is part of the ECL Grammar table. We enclosed it here for quick reference. 

9101: Minutes since General Quarters (GQ) 
[numl] is number of minutes since GQ set 

9102: Seconds since GQ 
[numl] is number of seconds since GQ set 

9105: New time scaling factor 
[numl] is current simulation time in seconds; [num2] is new time scaling factor * 100 

9110: Begin simulation 

9111: Pause simulation 
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9112: Resume simulation 

9113: Stop simulation 

9120: Call GQ. Sets zero point for simulation time. 

9201: Dynamic table updated by agents 
[string 1] is table name; [numl] is serial number of updated entry 

9202: Dynamic table updated by simulator 
[stringl] is table name; [numl] is serial number of updated entry 

9211: Fighting fire 
[numl] is compartment serial number; [stringl] is fire-fighting medium; [num2] represents 
strength (number of'doses') of fighting 

9212: Flooding compartment 
[numl] is compartment serial number 

9213: Dewatering compartment 
[numl] is compartment serial number 

9214: Mechanically isolating compartment 
[numl] is compartment serial number 

9215: Electrically isolating compartment 
[numl] is compartment serial number 

9216: Overhauling compartment 
[numl] is compartment serial number 

9231: Ventilate (desmoke) compartment 
[numl] is compartment serial number 

9232: Secure (stop) ventilation in compartment 
[numl] is compartment serial number 

10001: Ignite compartment (Temporary hack for primary damage) 
[numl] is compartment serial number 

10002: Flood compartment (Temporary hack for primary damage) 
[numl] is compartment serial number 

12821: "God mode" status report from sim 
[compartment] is KBS compartment ID; [status] is new status 
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Appendix B: Examples 

B.l Using Various Simulation Features 
The following is a list of how to use special simulation features. The numbers (ship part ID, and 
time in seconds) appearing in the examples are chosen arbitrarily. If you are going to use that 
feature on a specific ship database, you need to make sure that the numbers you do use make 
sense on your ship. 

B.l.l Ignite a Compartment 
There are two ways to ignite a compartment. One is to use the God-mode command ECL 10001, 
and the other is to specify the compartment's status in such a way that its temperature is high 
enough and oxygen concentration is not too low. Here we explain the ECL 10001 method. The 
following ECL message ignites compartment 128 at ship time 109 (time in seconds). 

ECLNum = 10001, TimeStamp = 109, Numl = 128 

B.1.2 Specify Compartment Initial Status 
A compartment's status can be specified intentionally to give the simulator an initial state to run. 
The following procedure specifies the state of compartment 128 at ship time 130 and then 
notifies the change to the simulator. 

Stepl: Edit CompartmentStatus table so that the record with CompartmentID 128 has: 

LowerZoneTemperature = 300(Celsius) , UpperZoneHeight = 300(Celsius). It is not 
recommended to change the Pressure field or to assign a temperature value that is too 
large. 

Step2: Send the following ECL command: 

ECLNum = 9201, TimeStamp - 130, Stringl = "CompartmentStatus", ECLNuml = 128. 

After simulator reads in the ECL command, it retrieves the record with Compartmentld = 128 in 
the CompartmentStatus table, and then 300 degree (Celsius) automatically ignites the 
compartment. 

What can be specified as initial state are Temperatures, Pressure and 02Concentration. 

B.1.3 Open/Close a Door/Hatch/Scuttle 
Opening or closing a door, a hatch or a scuttle are very similar to each other. Here we give an 
example of opening door 80 at time 239: 

Stepl: In DoorStatus table, check the IsOpen box for door 80. 

Step2: Send the following ECL command to ECLMessages table: 

ECLNum = 9201, TimeStamp = 239, Stringl = "DoorStatus", Numl = 80. 
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B.1.4 Add/Patch a Bulkhead Rupture 
The following is an example of adding a rupture on bulkhead 35 at time 345: 

Stepl: Add the following information to WallRuptures table: 

WallDD = 35, Area = 9.0, Height - 1.0. Area is in square feet. Height is the height of the 
rupture's center on the wall if the wall is vertical. If it is a deck, then field Height has no 
significance. Field class has no significance. 

Step2: Send the following ECL command: 

ECLNum = 9201, TimeStamp = 345, Stringl = "WallRuptures", Numl = the rupture's 
ID that is specified by database automatically after the bulkhead rupture record is inserted 
in the 1st step. 

Note: Patching a bulkhead has not been implemented.. 

B.1.5 Set Fire Boundary 
The following 2 steps show setting up a set of fire boundaries on side 34,37 and 39 with set ID 2 
at time 501. 

Stepl: In FireBoundaries table, add three records: 

Set = 2, SidelD = 34; Set = 2, SidelD = 37; Set = 2, SidelD = 39. 

Step2: Send the following ECL command: 

ECLNum = 9221, TimeStamp = 501, Numl = 2 (set ID). 

Upon retrieving this command, the simulation queries the ProposeFireBoundaries table and sets 
a fire boundary on all the sides with Set ID 2. 

B.1.6 Fight Fire Using Water/Water Mist/AFFF/Halon 
Sending the following ECL command fights fire using water mist at compartment 128 at time 
567 with strength 95%: 

ECLNum = 9211, TimeStamp = 567, Stringl = "watermist", Numl = 128, Num2 = 95. 

Num2 must be an integer in range 0-100. For fighting fire using other methods, specify String 
as "water", "afff'or "halon" instead. 

B.1.7 Flood a Compartment 

The following God-mode ECL command initiates flooding of compartment 127 at time 234: 

ECLNum = 10002, TimeStamp = 234, Numl = 127. 

There are other (more natural) ways to initiate flooding of a compartment. One is to add a 
bulkhead rupture of compartment 127. Make it sure that the bulkhead with rupture is facing the 
ocean and the rupture is beneath the water surface. Water surface height is specified in table 
CompartmentStatus. It is the WaterDepth of the record with CompartmentID 0. This information 
has to be in the database before running the simulation. 
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The second way to flood a compartment is to add a fire main rupture at a convenient pipe 
segment. This will be discussed later. 

B.1.8 De-flood a Compartment 
The following ECL command initiates de-flooding of compartment 93: 

ECLNum = 9213, TimeStamp = when you start, Numl = 93, Num2 = the deflooding rate 
you can specify (in cubic meter per second). Num2 can be unspecified (0) and in this case the 
simulator will use the default rate. 

The capability to stop de-flooding has not been implemented. 

Open/close a fire main valve 

The following two steps opens valve 23 at time 45: 

Stepl: Check the IsOpen box of valve 23 in table FireMainValves. 

Step2: Send the following ECL command: 

ECLNum = 9201, TimeStamp = 23, Stringl = "FireMainValves", Numl = 23. 

To close a valve, just repeat the above process by unchecking the IsOpen box. 

B.1.9 Open/Close a Fire Main Sprinkler/Plug 
The following two steps opens plug 23 at time 45: 

Stepl: Check the IsOpen box of plug 23 in table FireMainPlugs. 

Step2: Send the following ECL command: 

ECLNum = 9201, TimeStamp = 23, Stringl = "FireMainPlugs", Numl = 23. 

To close the plug just repeat the above procedure by unchecking the IsOpen box. 

B.1.10    Turn on/off a fire main pump 
The following turns on pump 415 at time 54: 

Stepl: Check box IsOn of record with PumpID 415 in FireMainPumps table. 

Step2: Send the following ECL command: 

ECLNum = 9201, TimeStamp = 54, Stringl = "FireMainPumps", Numl =415. 

To turn off a pump just uncheck the IsOn box and send the ECL command. 

B.l.ll     Add/Patch a Fire Main Pipe Rupture 
The following 2 steps add a rupture to a pipe segment. 

Stepl: Add a new record to FireMainRuptures table: PipeID=21, Position = 0.2(feet from head 
of pipe 21), CrackWidth = 0.05 (foot), CrackLength = 0.4(foot), Patched unchecked. 

Comments: 
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1. Do not assign Position a value greater than the pipe's length, or else an assertion failure 
will occur. 

2. A rupture is modeled as a crack in the pipe. The crack is assumed to be like a half-open 
mouth. The crack width is the distance between the middle point of the upper lip and 
lower lip. The crack length is the total length of the crack perimeter. 

Step2: Send the following ECL command: 

ECLNum = 9201, TimeStamp = what you want, String 1 = "FireMainRuptures", Numl = 
the RupturelD created automatically. (This means you need to read in that record again to 
get the RupturelD after you put it into the FireMainRuptures table.) 

To patch a rupture, just check the Patched box, and send an ECL command in the same format. 

B.1.12    Add a Hose to Direct Water From a Remote Site 
There are three points to specify: the fireplug where water is from, the diameter of the hose, the 
length of the hose, and the compartment to which water is directed. All these pieces of 
information are fields in the FireMainHoses table. 

Stepl: Add a record describing the hose to the table FireMainHoses: 

FirePlugID = 42, Diameter = 0.3 (foot), Length = 20 (feet), DestCompartmentID = 111, box 
"Removed" unchecked. 

Step2: Send ECL command: 

ECLNum = 9201, TimeStamp = when the hose is added, String 1 = "FireMainHoses" Numl = 
42 (the plug's ID). 

To remove a hose just check the box "Removed" and send the same ECL command. 

Important: If a hose is connected to fire plug 42 which has incident pipe 41, then pipe 41 cannot 
have any rupture. If it has, then the rupture leak will be incorrectly added to compartment 111 
instead of compartment 103 where the pipe is. To add a rupture, add it to a nearby pipe. 

B.2 An Example of DC-SIM Running on a Complicated Scenario 
In this section we give an example of DC-SIM duplicating scenario No. 7 of the 1998 DC- 
ARM/ISFE Demonstration Tests. 

Quoted from "Results of 1998 DC-ARM/ISFE Demonstrations Tests" [Parker, et.al., 1999], page 
46: 

"Test arml_07 was a simulated missile hit with warhead detonation test. The fire was simulated 
using two large Class A wood cribs in the forward corners of the Comm Center. The four large 
vents in the second deck, which simulates the blast damage of the deck, were open. This allowed 
free communication between Comm Center and CIC and led to ignition of the false deck. A 
high-volume rupture assembly was located off the fire main in the Ops Office. The Safety Team 
opened the rupture as the RRT entered CIC to simulate a high flow rupture resulting in the loss 
of fire main pressure. Blast damage other than the deck opening (i.e. fragmentation holes, 
jammed accesses, blocked accesses) was not included in this test. The intent of this test was to 
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evaluate the manning organization at an intermediate step between the nondetonation and 
detonation test." 

The following is a list of the events that DC-SIM can duplicate. It is part of the list indicated on 
page 104 of "Results of 1998 DC-ARM/ISFE Demonstrations Tests" [Parker, et.al., 1999]. 
Compartment ID used by DC-SIM and other Ids are inserted into the list whenever necessary to 
facilitate the user to understand the enclosed simulation data. 

Event Time (min) 
-2:00 

10 

13.5 

25 

30 

36 
44.5 

53 

Events 
Fire ignited in compartment 139 (Comm Center) 
DCA announced the upper boundary in CSMC/Repair 8. 
Smoke reported in the Combat System Office at 2-22-4-L 
Desmoking system was called away to rig for installed ventilation 
DCA announce forward and aft boundaries at FR15 and FR29 
False deck in compartment 218 (CIC) ignited 
Investigator reported a class A fire in compartment 218 (CIC) 
Fire main restoration. Rupture initiated in compartment 113 (Ops 
office). (A rupture is set on pipe with ED 85. Its connection in fire 
main is like: valve (ID85) Pipe (ID85) junction (ID86). 
Valve 85 is originally open, so closing this valve isolates the 
rupture. 
DCA reported loss of the fire main on both the port and starboard 
sides   
DCA asked DCRS 2 to manually close valve 2-23-1 (Valve with ID 
85), which restored the starboard side fire main. 
Instrumentation showed that water was applied to the Class A fire in 
compartment 218 (CIC).  
Fire in compartment 139 (Comm Center) was reported out by the 
Scene Leader   
Desmoking using AMR No. 1. 
Fire in compartment 218 (CIC) was reported out. This may have 
been a delayed report.  
Flooding in compartment 113 (Ops Office) was discovered and 
stopped. (In the simulation, the flooding was caused by the 
rupture on pipe 85 set at 9th minute, and was already isolated at 
13.5 minute)  

DC-SIM duplicates this scenario by reading in commands in the following ECL table (created 
automatically by an independent scenario generator), and acting correspondingly: 
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Serialv- ' •:''•' ECLNum fimlstimp*? 
<►' 1 10001 10 

2 9201 10 
3 9201 10 
4 9201 10 
5 9201 10 
6 9110 0 
7 9102 10 
140 9102 1130 
279 9102 2480 
8 12821 10 

■ 

9 9201 660 
10 

11 
9221 120 
9201 810 

12 

13 

14 
15 

9211 1500 
9211 1550 
9211 1600 
9211 1700 

16 9211 1705 
17 9211 1710 
18 9211 1715 
19 [9211 1700 
20 9211 1750 
21 9211 1600 
22 ^211 L1805 
23 9211 1810 

Command 10001 with serial 1 ignites compartment 139 at time 10 second. The compartment 
number is not captured in the screen shot due to space limitations. (The ECL table is very wide). 

The four 9201 commands set 3 ruptures on the deck connecting Comm Center and CIC, and 
open a hatch on the same deck. The purpose is to simulate a rupture caused by detonation. Again, 
only part of the table is shown. Other parameters are specified in String 1, Numl fields in the far ' 
right end. 

Command 9110 starts the simulation. 

Command 9201 with serial 9 initiates a fire main rupture (at time 660 seconds) on pipe 85 with 
(unshown) parameter Stringl = "FireMainRupture", and Numl = 85. 

Command 9201 with serial 11 closes valve (ID85) at time 810. This is used to isolate the fire 
main rupture and thus restores fire main pressure and stops flooding in compartment 113 (Ops 
Office). 

The rest of the 9211 commands are used to fight fires in compartment 139 and 218. Parameters 
of these fire-fighting commands are not captured due to space limits. 

The bold part of the table is what we can show of how DC-SIM responds to the scenario. The 
other parts cannot be shown, like setting up fire boundaries, but DC-SIM does take that into 
account when simulating in real time. 

The following is the output of DC-SIM, consisting of screen shots of the central database, with 
explanation whenever necessary. 

1. At time 25 seconds, part of CompartmentStatus table: 
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ifc 
CompartmentlD   llowerZoneHeight lupperZoneHeiqht ilLower2oneTemper<rUpperZönefeWerf Pressure JFireStatus [F 

139 ; 10.79289 10.1121004 123.19209 1108.6879 s, 101664.3 ignited 

Compartment 139 (Comm Center) is ignited. The unit for zone heights is feet and temperature is 
Celsius degrees. 

2. At time 265 seconds, part of CompartmentStatus table: 

CwnpartmentlD »!#] lBwef/!oneHeicjfR Öpp"erZoneHeicjriP' |L6WerZoneTemper3UpperZdneTernper<l Pressure         "  I FireStatus -|F 

► 

'lip 
m 

111.  
112 

10.93091 
11.03408 

0.1515818 25.81452             1124.9059              1102993.9 intact .< 
0.1317414 :22.37586 70.66524 101631.1              j intact 

ignited 

.< 
139 10.48286 a.4221323 42.69261 248.482 109435.7 _c 

140 10.79224 0.1127487 21.7491 31.85606 101282.2 intact i-< 

m 141 10.772 0.1329892 22.23395 62.09142 101622.8              1 intact .« 
S,Ä 142 10.32038 0.1237803 21.35025 71.04379 101283.9 intact uc 

21B 10.94655 0.1784367 i33.51745 197.6942 109437.3 intact i-C 

Temperature is increasing in the compartment centered at 139. Compartment 218's temperature 
is high due to vertical upward convection through open hatches. 

3. At time 625 seconds, part of CompartmentStatus table: 
C«npatta'eBI3P;Mtt^e?ZorteHe1qhtl ffiiiäirZpneHeiqnP 

a  
67 
HI 
112 
114 
136 

.y': 137 
139 
140 
141 
142 
143 
144 
169 
218 

! 10.56556 
19.937656 
! 10.81572 
110.99648 
111.68542 
ill.11639 
111.12776 
19.806528 

0.1294297 
0.1190002 
0.2667676 
0.1693384 
0.1395708 
0.1335972 

tWwer?oneTeW-^ 

24.23227 

gjMf^StaTflsfifl 
85.78947 

21.35523 
35.40572 
31.57029 
22.36294 
21.29104 

0.1222343 120.59307 
1.098465 

110.70173 
!10.74402 
110.27767 
110.3282 

[ 0.2032573 
|O.16O?702 
iQJjS65J395- 
To.1159588 

110,22244 
31.01337 

110.79741 

!0.106721 
0.3674303 
0.3275799 

j3?,05107 
125.14297 
126.52631  

25.01752 
]21,52142 
120.75143 

22.33BB8 
42.60157 

70.4861 
102312.4 

1101283 J6 

intact 
intact 

200.8936 
142.861 
70.77972 

1106833.9 
'105045.6 
1101627.1 

77.17154 1101282.1 
46.28917 
211.9819 

100938.8 
112219.9 

295.4496 ! 103328.3 
167.67 
206.843 

103376.2 
1102991.5 

intact 
intact 
intact 
intact 
intact 
ignited 
intact 
intact 
intact 

54.38096 
30.61121 
73,42903 
269.1363 

101282.1 
.100938.8 
101625.4 
112219.6 

intact 
intact 
intact 
intact 

Temperature is further increased. Some compartments have high temperature due to their 
location and shape. 

4. At time 700 seconds, part of CompartmentStatus table: 

y, a. „  jlO.56258 
9~936179 

.0.1324122 
 1o7l204778 

j 28,09545. 
:23.28687 

i 103.4596 . 
79.20897 

, 103683,3 
'"' 101969.3 

intact 
intact 

- 
67 * 
103 ; 12.5952 ! 0.1364524 20.63699 [41.94661 100938.8 intact : - 
111 10.77981 0.3026764 37.51104 [209.0231 107705.4 intact - 
112 10.96753 0.1982926 32.92307 183.3131 105702.3 intact - 
114 11.68083 0.1441528 23.20366 87.43787 101968.3 intact - 
136 11.09672 0.1532744 21.7645 130.1299 101624.8 intact - 
137 11.12776 ;0.1222343 20.59307 46.28917 100938.8 intact - 
139 9.611087 i 1.293907 38.76653 209.2051 113405.5 ignited - 
140 10.66667 i0.2383177 26.09742 397.8606 103999.6 intact - 
141 10.75577 0.1492175 26.7963 130.6291 103344 intact - 
142 10.26382 0.180333 25.5962 248.8913 103331.5 intact 

143 10.3282 0.1159588 21.52142 54.38096 101282.1 intact 

144 10.22244 0.106721 20.75143 30.61121 100938.8 intact 

169 31.01337 0.3674303 22.33888 73.42903 101625.4 intact 

218 10.64191 0.4830783 43.08298 252.3593 113405.8 ignited 
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Fire has spread from compartment 139 (Comm Center) to Compartment 218 (CIC). 
Compartment 140 has high temperature because of its large contact area with compartment 139 
and relatively small shape. 

5. Fire main rupture specification (initiated at time 9 minutes). Part of the FiremainRuptures 
table: 

RupttirelD sft . "M. PipelD Position ' GrackWidth ■ 1» I CrackLength 

* 

1 185  [0.1  0.4 ;i.5      i 

6-  Fire main pressure before the fire main rupture is set on pipe 85. Part of FiremainPressures 
table: 

- NodeIC Handle Pressure ; /U 

. Yi 
74 -9999 650096.6 
75 -9999       I 651955.1 
76 -9999 651955.1 
77 -9999 649826.6 
78 -9999 650764.3 
79 -9999 654415.2 
80 -9999 655380.7 
81 -9999 656320.9 
82 -9999 644672.2 
83 -9999 641536.6     1 
84 -9999 640975.B 
85 -9999 645880.8 
86 -9999 654328.3 
87 -9999 656508.3 
88 i-9999 640444.3 
89 ! -9999 637300 
90 i-9999 636749.4 
91 i-9999 636125.6 
92 i-9999 635611.3 
93 : .9999 635102.1 
94 ■^999 

! -9999 
635102.1 

635102.1 95 
96 -9999 646446.2 
97 i -9999 634512.1 
98 i -9999 633965.1 
99 i -9999 635731.2 
100 -9999 635083.7 
101 -9999 634564.1 
102 -9999 634042.6 
103 -9999 630939.9 
104 -9999 630556.3 
105 -9999 1630584 
106 -9999 630211.3 
107 -9999 629560.9 
108 -9999 621781.2 
109 -9999 457031.4 
110 -9999 447058.8 

The unit of pressure is Pascal. Converted to PSI, its range is about 63-93 PSI. 
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7. Fire main pressure after pipe rupture is set on pipe 85. Part of the FiremainPressures table: 

NodelD      | Handle       |l Pressure     | 

72 9999 152173.4 

73 -9999 146712.2 

74 -9999 147001.4 

75 -9999 146712.2 

76 -9999 146712.2 

77 -9999 121931.2 

76 -9999 125113.2 

79 -9999 130910.4 

80 -9999 134109.6 

61          j -9999 137227.6 
- 62 -9999 78994.02 
j 
ür 

63 -9999 66416.59 

84 -9999 55628.25 

in 
65 -9999 36674.88 

86 -9999 20543.15 
. 87 

86 

-9999 22723.15 

-9999 58536.98 

89        _j r9999      58761.99 

IIP 

H 
■ • 

90 -9999 61770.22 

91 -9999 65159.98 

92 -9999 67978.97 

93 -9999 70771.58 

94 -9999 70771.56 

95 -9999 70771.58 

96 -9999 82115.74 

! 97 4-9999 73984.66     1 
3otJ -QQQQ 7fiQ7d to 

Converted to PSI, the pressure is about 3-22 PSI. The extent of pressure loss depends on the 
rupture's location and size. 

8.Flooding caused by the fire main rupture leak. Part of CompartmentStatus table: 

ConwtfnentlD t| LcwerZoneHeiqht fijpperZoneHefaht I U^ZcreTenperjUpperZonefemper& Pfeaaire »■ 
100S95.S ! 11.17904 ! 0.1159199 ; 19.85 119.65 

iFireStättisl 
; intact 1-9999 

|5ootDensity 
0 

|ei26 0,2      _" JO             0 i0 "~~~     10 0.1291239 
iFloödJnqStatlK- 
:<NULL> 

fiupsize ts 
<Binary> 

Flooding depth is in feet. At this time the depth is 0.129 foot in compartment 113 (Ops Office). 
This is the reading of flooding depth after step 8 (isolating fire main rupture). 
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9.Fire main pressure after restoration (manually closing valve 2-23-1 to isolate rupture on pipe 
85). Part of the FiremainPressures table: 

NodelD   -  ?| Handle      1 Pressure ■ i. m 
70 -9999 660591.3 

71 -9999 661828.1 
72 -9999 659691 
73 -9999 651955.1 
74 -9999 650096.6 
75 -9999 651955.1 
76 -9999 651955.1 
77 -9999 649826.6 
78 -9999 650764.3 
79 

SO 
-9999 654415.2 
-9999 655380.7 

81 -9999 656320.9 

UPt 

82 -9999 644672.2 
83 -9999 641536.6  i 
84 -9999 640975.8 
B5 84 645880.8 
85 ^852 -1E+10 

wt 86 -9999 -1E+10 
87 

88 
-9999 -1E+10 
-9999 640444.3 

637300 89 -9999 
90 

91 
-9999 636749.4 

636125.6 -9999 
92 -9999 .635611,3 
93 -9999 i635102.1 
94 -9999 635102.1 
95 -9999 ■635102.1 
96 -9999 646446.2 

It can be observed that pressure is restored, though part of the fire main (after valve 85) was 
isolated and thus had no pressure inside (notated by-lE+10, a negative infinity). 

10. At time 1600 seconds, part of CompartmentStatus table: 

CompartmentlD: : | LowerZoneHaqht J| Uppe'rZoneHeiqhtil lIowerZoneTemperil Üge?ZorSfempeK['Pressure? 
13? 8-87?262 2.027731 38.40739 205.5083 116795.6 
2™- 9,45.0733 _     1.664256 32.52262 146.5733 116795 5 

vl FireStatus*; 
[ignited 
jignited 

Fire fighting in compartment 218 has been initiated. It can be observed that the temperature in 
compartment 218 (CIC) is decreasing. 

11. At time 1705 seconds, part of CompartmentStatus table: 

CompartmentlD 
139 
218 

1 LowerZoneHeiqht I UpperZoneHelqht ) LowerZoneTemper;! UpperZoneTemper<| Pressure 
8.839965 2.065028 34.10479 
9.433388 

2.065028 
1.691602 

FireStatus 

30.9543 
162.5574 
136.3788 

115084.3 
115084.6 

Continuous fire fighting in compartment 218 (CIC) put out the fire and the temperat 
decreased 

ignited 
extinguished 

ure 

B-10 



12. At time 1810 seconds, part of CompartmentStatus table: 

CompartmentID   lLowerZoneHeiqhUIUpperZoneHeiqfts|L6werZoneTempw;lUpperZQneTemper^ Pressure IpreStatus 
139 i8.898029 2.006964 26.05516 107.3724 U 11964.6 extinguished 
21B !9.426497 1.698493 30.23671 124.7104 i 112174 extinguished 

Fire fighting in compartment 139 (Comm Center) has also put out the fire and decreased the 
temperature. 

13. At time 3000 seconds, part of CompartmentStatus table: 

CompartmentlD    iLowerZdneHeiqht | UpperZoneHeiqht |LowerZoneTeroer<|Uppei^heTempeR| Pressure     -        |Fire5tatus 
139   _„. L?i.i5§Z9. l-75.9204 J21,57791   ,    J29.62751    _ L107245.8 _jex&gyjshed 
__,  )g.561957         "l^63pjllJ llj26.13883  __89.36872  - _J07595.9     Jjextinguished, 

Temperature has decreased further due to heat dissipation. 

B- 



Appendix C: List of Classes and Their Relationships 

Despite the project's numerical nature, it is designed in an object oriented way to facilitate 
simulation of real time ship structure change. (The fire main simulator is an exception because a 
fire main solver is normally in centralized form). The project contains three types of objects: ship 
part objects, simulation control objects and I/O objects. 

Each ship part object describes the physical properties ofthat object and its effect on neighboring 
objects' properties. For example, a door object not only contains members to determine its 
dimension, but also members to determine the airflow through it and thus affects its neighboring 
compartments' properties. 

Each simulation control object controls simulation logic. They can be divided into main control 
objects (each for fire, flooding and fire main), and auxiliary control objects (parameter tuning). 

I/O objects just provide a database interface and a human computer interface. 

In the following we introduce in detail the classes defining these objects. 

C.l Ship Representation Classes 
In this part we introduce ship classes representing ship structure. These classes form a complete 
map of a ship at any time. 

C.l.l The Container: CShipStructure 
CShipStructure contains all the ship elements, such as compartments, bulkheads and doors, as 
well as methods used to initialize itself and to report ship status. This class doesn't include the 
fire main because it is not designed in a true object oriented way, and has little interaction with 
the rest of the system. (The fire main is a member of CShip, which also contains a 
CShipStructure member.) 

CShipStructure is declared and implemented in ShipStructure.h and ShipStructure.cpp in 
subfolder "fire source". 

C.1.2 Classes for Individual Parts Except Fire Main 
Almost every member of CShipStructure corresponds to a ship element. They are instances of 
the classes discussed below. 

C.1.2.1Ccompartment 
This is the single most important class in the whole project. This class contains all the 
descriptions of the ship except what is provided by fire main. Specifically, it includes: 

Dynamic information: air composition, temperature, pressure, remaining fuel amount and status, 
fire status, transmittance, water depth, flooding status, casualty control responses (fire fighting, 
de-flooding, de-smoking), and incoming/outgoing gas rate, smoke rate, heat rate and water flow 
rate. 
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Static characteristics: the ID's of the surrounding bulkheads (including decks and overheads) 
with the vents they contain (doors, hatches, scuttles, and ruptures), deck area, height, sensor 
information, and time constant (with its derivatives like temperature variation and heat 
dissipation delay). 

Methods: combustion (plume effect), state updating based on incoming/outgoing rates and 
casualty control. 

This class is declared and implemented in Compartment.h and Compartment.cpp in subfolder 
"fire source". 

C.1.2.2CcompartmentContent 

This is a simple class that contains descriptions of compartment contents. There can be up to 
three different types of contents in any compartment. The reaction properties of the fuels are 
described by members of class CShip that is the major control class and contains an instance of 
CShipStructure. 

This class is declared and implemented in CompartmentContent.h and CompartmentContent.cpp. 

C.1.2.3Cbulkhead 

This class describes a bulkhead object. It contains: the ID of the bulkhead's two sides and the ID 
of the compartments that either side faces, the bulkhead's thickness, area, width and height, the 
heat flow through it, and method FindWallConduction to determine the heat flow. The heat flow 
is automatically collected by the two compartments in FindWallConduction. 

This class is declared and implemented in Wall.h and Wall.cpp in subfolder "fire source". 

C.1.2.4Cside 

This class describes a side object. It contains the side's 4(or 3) vertices, its temperature, and the 
boundaries of its zones. It also contains information on whether or not a fire boundary has been 
set on it. 

This class is declared and implemented in Side.h and Side.cpp in subfolder "fire source". 

C.1.2.5Cvertex 

This class just contains a vertex's coordinates. It is declared and implemented in Vertex.h and 
Vertex.cpp of subfolder "fire source". 

C.1.2.6Cvent 

This is the base class for a vent object. It contains basic descriptions like area, center height, ID 
of the bulkhead holding it and the vent's ID. It also contains dynamic information like various 
gas propagation rates and water flow rates. Methods used to determine air convection and water 
flow are also included, as well as several virtual functions for geometrical calculation that are 
used in calculating fluid dynamics. This class is declared and implemented in Vent.h and 
Vent.cpp in subfolder "fire source". 
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C.1.2.7Cdoor 
Derived from CVent, this class describes a door object. It is relatively simple because it inherits 
all the complicated members of CVent, and only overrides the virtual functions declared in 
CVent. This class is declared and implemented in Door.h and Door.cpp in subfolder "fire 
source". 

CHatch: Same as CDoor. 

CScuttle: Same as CDoor. 

CRupture: Same as CDoor. 

C.1.3 Classes for Fire Main Parts 
Fire main parts are not contained in class CShipStructure. Instead, they are members of class 
CFireMain. The following are classes describing parts of the fire main. 

C.1.3.1Cposition 
This class describes a point on the fire main by its x,y,z coordinates. The coordinates used here 
are the same as those used in describing class CVertex. (Actually these two classes are 
duplicated due to the fact that the fire main simulator and fire simulator were developed 
independently.) This class is declared in Position.h of subfolder "fire main source". 

C.1.3.2CFMNode 
This class describes a fire main node. A fire main node is a specific point in the fire main pipe 
network. It can be an elbow, an open valve, a side of a closed valve, a T-connection, a fireplug, 
or the intersection of a pipe with a bulkhead. This class contains a member on the node's 
position (a CPosition instance), whether or not it is a (closed) valve, its pressure, and graph 
characteristics like its father and sons in a spanning tree of the whole fire main system. 

This class is declared and implemented in FMNode.h and FMNode.cpp of subfolder "fire main 
source". 

C.1.3.3CFMEdge 
This class describes a fire main edge. A fire main edge can either be a pipe segment or a pump. 
The class contains members on its hydraulic status like Reynolds number, flow rate, and friction 
coefficient, as well as methods used in calculating these variables. 

This class is declared and implemented in FMEdge.h and FMEdge.cpp of subfolder "fire main 
source". 

C.1.3.4Cpump 
This class describes a fire main pump object. It contains the ID of the edge that the pump 
represents, the ID of the pump in the central database, and the pump's hydraulic characteristics. 
It also contains the method to determine the pump's flow rate based on its head gain, or vice 
versa. 
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This class is declared and implemented in Pump.h and Pump.cpp of subfolder "fire main 
source". 

C.1.3.5CFMFirePlug 

This is a class with member variables indicating the plug's ID and its status. See "fire main 
source\dbfm.cpp". 

C.1.3.6CFMValve 
Similar to CFMFirePlug. 

C.2 Simulation Control Classes 
These classes are not related to any ship object. Instead, they control the simulation process by 
either embodying numerical methods or assisting simulation threads. Besides the control classes, 
DC-SIM also uses a multimedia timer to gain real time performance. The time is also introduced 
in this section though it is not embodied in a class. 

C.2.1 Classes for Simulation Threads 
There are three simulation threads: fire/smoke, flooding and fire main. They are described by 
CFire, CFlooding and CFireMain respectively. Together with CShipStructure, they are held by 
class CShip which represents a complete simulated ship. Loading the ship, launching the threads 
and parameter tuning are implemented as members of class CMFShipDoc. 

C.2.1.1Cfire 

This class controls fire simulation with the timer. The main part of the fire simulation is 
implemented in CCompartment and CVent. So CFire just contains a pointer to the CShip object 
to gain access to all of the ship structure. CFire contains a fire parameter object for parameter 
tuning at run time. It also contains an event handle for synchronization between the fire thread 
and flooding thread to facilitate interaction between these two modules. CFire is declared and 
implemented in Fire.h and Fire.cpp of subfolder "fire source". 

C.2.1.2Cflooding 

Very similar to CFire. This class is declared and implemented in flooding.h and flooding.cpp in 
subfolder "flooding source". 

C.2.1.3Cfire main 

This class describes the fire main. Unlike fire and flooding simulation, it contains the fire main 
structure instead of putting it in CShipStructure. The fire main structure is stored in 4 arrays: 
pumps, edges, nodes and hoses, as well as an adjacent matrix representing the graph structure. 

This class also contains methods for initializing and solving the fire main simulation, as well as 
on changing fire main structure at run time. 
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CFireMain is declared and implemented in CFireMain.h, CFireMain.cpp and dbfm.cpp of 
subfolder "fire main source". 

C.2.1.4Cship 
This class represents a ship. It has a CShipStructure object holding ship structural information, a 
CFireMain object holding fire main information and solving fire main, a CFire object solving 
fire and smoke propagation, and a CFlooding object solving flooding spread. Besides these, it 
also contains a multimedia timer, 3 events for fire, flooding and fire main simulators to be 
activated when time is appropriate, a database object. 

CShip doesn't contain methods used to initialize the whole ship and launch the simulation. 
Instead, these methods are members of CshipDoc. The most important method CShip has is the 
ECL message retriever and processor. This method is called every time when the multimedia 
timer clicks. 

This class is declared and implemented in CShip.h and CShip.cpp. 

C.2.1.5CMFShipDoc 
This class is part of the project's MDL It is not appropriate to place important simulation 
functions here. But it cannot be separated completely from the rest of the simulation project since 
it is the user interface for parameter tuning. 

This class contains a parameter-tuning mechanism for each individual simulation thread. It also 
contains a ship loader that serves as the simulation launcher as well. 

The class is declared and implemented in MFShipDoc.h and MFShipDoc.cpp. 
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Appendix D: Comparison of DC-SIM with CFAST on a 
Single Compartment Model 

D.l Abstract 
To evaluate and improve the fidelity of heat conduction in the DC-SIM fire simulator, its 
predicted temperatures over time for a simple single-compartment fire were compared against 
those of the Consolidated Model of Fire Growth and Smoke Transport (CFAST). The boundary 
conduction parameter in DC-SIM was tuned to match the long-term temperature decay in a post- 
flashover compartment in the CFAST simulation. 

D.l.l The Single-Compartment Model 
A cubical enclosed compartment of side length 3.33 m was constructed. The overhead, bulkhead 
and deck, all 0.3 m thick, were given thermal properties equivalent to the honeycombed steel 
bulkhead materials found in Navy vessels. This compartment deliberately lacked airflow 
connections to the external environment, in order to test fire spread and growth independent of 
airflow effects. However, heat conduction from the compartment to the environment could 
occur. 

Ten seconds after simulation start, a fire in the compartment was set. Temperature, pressure, and 
smoke density data are recorded from both the upper and the lower zone of the compartment 
from t = 11 seconds up to and including t = 3600 seconds. 

D.1.2 Setting the Fire 
For an accurate comparison of DC-SIM and CFAST, the models' ignition conditions must match 
as closely as possible. Yet, their ignition processes differ. DC-SIM simply begins combustion 
of the available fuel at room temperature, using the amount of available fuel and oxygen, as well 
as the fuel's heat of combustion (a chemical constant), to calculate the fire's properties. In 
contrast, CFAST requires that the user specify any two of the following three parameters of the 

, fire at one or more time points: 

1. Heat of combustion (J/kg) 

2. FMASS: The mass loss rate of the fuel - that is, the rate of fuel pyrolysis (kg/s) 

3: FQDOT: The heat release rate of the fire (W) 

Only two of these parameters are needed, since any one can be calculated from any other two. 
Heat of combustion is a constant, whereas FMASS and FQDOT can vary over time; thus, these 
latter two have more significance in starting and controlling a fire. In "real life," one starts a fire 
by adding heat energy (e.g. striking a match); by analogy, one may ignite a fire in CFAST by 
setting FQDOT to an appropriately high level at the ignition time. In this sense, CFAST's 
method more accurately reflects the ignition and growth of actual fires, upon which the heat 
energy and size of the ignition event have an impact (e.g. a newspaper ignited by a large gasoline 
explosion will be consumed faster than if ignited by a match). 
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Much effort has been expended in determining an appropriate initial FQDOT (heat release rate) 
to match the DC-SIM simulation most closely. In DC-SIM, the heat release rate is an internal 
variable, calculated at each timestep. By igniting a compartment and recording this rate over 
time, then using the resulting data as FQDOT inputs to CFAST, we attempted to conform 
CFAST's simulated fire to DC-SIM'S heat output, so that wall conduction parameters could be 
accurately compared. 

D.2 Results 

D.2.1 Problems with Matching Heat Release Rates in CFAST and DC-SIM 
Unpredicted temperature results occurred when attempting to match heat release rates between 
DC-SIM and CFAST. It was found that the smaller the interval between the FQDOT time points 
specified, the more the maximum temperatures of both the upper and lower zones were 
constrained (see Figures D-l and D-2). In a fire in an enclosed compartment of human-habitable 
size, one would expect that the temperature of the compartment at some time during the fire 
would increase to at least 600 K, the "flashover" point; yet, with an interval of 200s between 
specified FQDOT points, the peak temperature in the upper zone only slightly exceeded 500 K. 
For FQDOT data included at intervals smaller than 100s, the peaks were lowered even more. 

It was also observed that adjusting the HOC (heat of combustion) parameter in CFAST (even to 
16 times that in DC-SIM) had little if any effect on the peaks of the CFAST temperature curves. 
This suggests that the primary factor limiting heat production in CFAST (and presumably DC- 
SIM as well) was oxygen. 

Figure D-l: 

DC-SIM and CFAST lower zone temperatures over time, 

with various FQDOT specifications in CFAST 
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Figure D-2: 

DC-SIM and CFAST upper zone temperatures over time, 

with various FQDOT specifications in CFAST 
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In addition, we found that numerical instability increased as the interval between FQDOT time 
points decreased. Although the CFAST simulation was set to run for 3600s, with FQDOT time 
points at 100s intervals, the system reported "division by zero" at 1909s; and with 50s intervals, 
"division by zero" occurred at 959s. (Note that the later stages of the fire are more important for 
measuring wall conductivity than the earlier stages, so that significant information is lost by 
premature termination of the algorithm.) The lower zone temperature curve exhibited an 
unexplained discontinuity with the FQDOT time point interval at 50s and 100s (see Figure D-3). 

It was found that the qualitative shapes and peak temperatures of the DC-SIM and corresponding 
CFAST curves matched most closely when FQDOT data points were spaced at least 750s or 
more apart. This only held true when at least two FQDOT values were used - one at the start of 
the test, and one close to the end (within 600s of 3600s). For any interval width above 750s, up 
to and including 3000s (two data points, at 10s and 3010s), almost the same temperature results 
occurred as for the 750s interval test. Yet, upper and lower zone temperatures remained 
significantly lower than their respective maxima in the DC-SIM simulation (see Figure D-4). 
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Figure D-3: 

CFAST lower zone temperatures over time, 

with FQDOT data points spaced at 50s and at 100s intervals 
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(Note: To increase meaningful 
detail, the graph only depicts 
timestamps from 32s to 1000s.) 

♦luwerzone temperature 
(K) when FQDOT data 
spaced at 50s Intervals 

ILowerzone temperature 
(K) when FQDOT data 
spaced at 100s Intervals 

200 400 600 800 1000 

Experimentation also revealed that increasing CFAST's FQDOT parameters could elevate the 
temperature peak close to that of DC-SIM. However, such arbitrary manipulation of empirical 
data is unlikely to represent a fair comparison of the two simulations. Rather than forcing the 
temperature curves of the two simulations to match, we applied a procedure discussed below. 

D.2.2 Boundary Conduction Comparison Methodology: Version 1 
Since it is very difficult to control the parameters of both DC-SIM and CFAST so that only 
boundary conductivity is tested, we make the following assumption about fires in airtight 
compartments containing unlimited amounts of fuel: Once the temperature of the compartment 
begins to decrease after the peak, enough oxygen in the compartment has been consumed that the 
fire has stopped producing significant amounts of heat. Essentially, after a certain time after the 
peak, the compartment undergoes Newtonian cooling with the outside environment as a heat 
sink, hi our model, the compartment is airtight, and thus the only means of heat transport to the 
outside world is via bulkhead conduction. Hence, the cooling rate should provide an 
approximate metric for the heat conductivity through the boundary. 
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Figure D-4: 

CFAST upper and lower zone temperatures over time, 

with FQDOT data points spaced at 750s intervals 
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Newtonian cooling obeys the differential equation 

(1) y=Ky-A) 

in which y is the current temperature, y' is the derivative of the temperature with respect to time, 
A is the ambient temperature (293 K), and k is the cooling rate (a negative real number). Its 
solution is 

(2) T(t) = A*C-eb 

To justify the use of this equation as an approximation, suppose that we include a "driving 
function" f(t) which describes the heat release rate of the fire in the "approximate Newtonian 
cooling" stage. For simplicity, assume in the following argument that the time t = 0 represents 
the beginning of this stage. Adding the driving function to the above differential equation results 
in the following: 

Q)y'-ky = -kA + f(t) 

whose solution is: 

(4)T(t) = A+C-ek,+eble-bns)ds 
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for some positive constant C. Experience with fires in enclosed, oxygen-limited environments 
suggests that f will resemble exponential decay (since the fire's self-sustaining capacity is 
proportional to the amount of oxygen left in the compartment). Empirical values for /(/) are 
given by the heat release rates that DC-SIM generates for our single-compartment model; from 
these data, we fit an exponential curve thereto (Figure D-5). 

Figure D-5: 

DC-SIM heat release rate (at default bulkhead conductivity of 0.2) over time: 
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Given this approximation for /with the empirical decay constant Rd 

term in the above expression becomes the following: 
-0.0024, the integral 

(5)  Je
( -* -0.0024 )s ds 

For a conservative k value of-0.0040, the term "-k-0.0024" evaluates to -0.0016, which, when 
compounded by the additional eb term outside the integral, causes the "non-Newtonian" part of 
Equation 5 to tend to 0. Hence, it seems reasonable that we may use Newtonian cooling as an 
approximation for the actual compartment cooling process. 

D.2.3 Empirical Estimation of the Cooling Rate: Procedure 1 

Assuming the Newtonian cooling approximation with cooling rate k, given two data points (to,y0) 
and (ti,yi), we find that 
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(6) k 
lnCy, -A)- \n(y0 - A) 

t,-L 

We take data for cooling rates at to = 1500s and ti = 2000s, at which the compartment has been 
cooling for at least 500s. We only consider the lower zone cooling rate in this report, since the 
boundary layer effect can significantly alter the cooling rate near the overhead. 

D.2.4 Results of Cooling Rate Comparison 
In the three tables below are lower zone cooling rate values calculated using temperatures at 
1500s and 2000s, over several simulation runs. 

Table D-l 

CFAST lower zone-cooling rates for various FQDOT data point intervals 

FQDOT data point interval (in seconds) Lower zone cooling rate 
200s -0.00032 
500s -0.000372 
600s -0.000375 
750s -0.000437 
1000s -0.000432 
Data points at 10s and 3010s only -0.000432 

Table D-2 

DC-SIM lower and upper zone cooling rates for various wall conductivity settings 

DC-SIM wall conductivity 
setting  

Lower zone cooling rate Upper zone cooling rate 

DC-SIM: default wall 
conductivity (0.2) 
DC-SIM: 0.15 wall 
conductivity  
DC-SIM: 0.1 wall 
conductivity  

-0.00106 

-0.00078 

-0.00051 

-0.0008 

-0.00062 

-0.00043 

Table D-3 

Comparison of CFAST cooling rates for doubled and unaltered FQDOT data 

Simulation description Lower zone cooling rate Upper zone cooling rate 
CFAST: regular FQDOT 
data, taken at 200s intervals 

-0.00032 -0.00045 

CFAST: doubled FQDOT 
data, taken at 200s intervals 

-0.00034 -0.00043 

A result, which supports our use of cooling rate as a comparator: in CFAST, doubling the values 
of all FQDOT data points had little effect on the cooling rate (as Table D-3 demonstrates). Thus, 
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this rate does not depend upon the scale of fire output in our single-compartment model, 
permitting comparison between CFAST and DC-SIM without concern of equivalence of heat 
release rates. 

The evidence of Table D-2 suggests that in DC-SIM, the cooling rate k seems to depend linearly 
on the boundary conductivity parameter. Linear regression predicts that k = -0.0055 (boundary 
conductivity), with 0.9999 correlation. For a cooling rate in DC-SIM equal to that in CFAST. 
with unaltered FQDOT data taken at 750s intervals, the boundary conductivity must be 0.079. 
This is significantly less than the current default boundary conductivity of 0.2. 

We ran a DC-SIM simulation of our single-compartment model, using 0.058 as the boundary 
conductivity constant (the predicted value when FQDOT data is given at 200s intervals). The 
resulting cooling rates: -0.00029 for the lower zone, and -0.0003 for the upper zone. For the 
lower zone, the error relative to the cooling rate in the equivalent CFAST simulation (using the 
above linear extrapolation) is only about 9.4 percent - indicating that our extrapolation above is 
reasonable. Also as predicted, the DC-SIM upper zone-cooling rate differs from the extrapolated 
prediction. We postulate that this difference is due to the boundary layer effect, whose 
parameter we will tune later. 

D.2.5 Bulkhead Conduction Comparison Methodology: Version 2 
For Version 1, we sampled temperature data at only two time points, 500s apart, to find the 
cooling rate. Curiosity led us to sample at every possible time, using backwards differences: 

(7) k =   = InO/, -A)- ln(y0 - A) 

in which yt is the current temperature, yM is the temperature at the previous second, and t is the 
current simulation time. Naturally this cooling rate would only have meaning after the 
compartment reaches peak temperature and is well into approximate Newtonian cooling (at least 
after t=1000s). We found that the cooling rate in our fire simulations, unlike pure Newtonian 
cooling, changes slightly over time. In CFAST with 0.2 (default) bulkhead conductivity, it 
oscillates with a slowly increasing amplitude and a slowly decreasing frequency between zero 
and a small negative number. In DC-SIM with 0.058 wall conductivity, it follows a smooth 
curve, and is bracketed by the CFAST curve's oscillations until about t = 3000s, at which point it 
diverges downwards. 

So we averaged the raw values over the past 20 to smooth out the oscillations. The CFAST 
(with FQDOT data taken every 200s) and DC-SIM lower zone-cooling rates matched very 
closely when the DC-SIM bulkhead conductivity was set to 0.058 (Figure 21). As an interesting 
aside, we observed significant oscillations in the DC-SIM cooling rate at 0.058 wall 
conductivity, although not at 0.1 or more wall conductivity. 
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Figure D-6: 

DC-SIM and CFAST lower zone-cooling rates, 

with various DC-SIM wall conductivities 
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D.3 Evaluating Validity of Wall Conductivity Results 
In order to compare DC-SIM with CFAST, it is paramount that both simulations be given the 
same parameters. In some cases, this could not be done.2 Table D-4 contains a list of the 
relevant parameters of this type: 

2 In the case of FQDOT (heat release rate), the parameter was matched at a small finite number 
of discrete time points (separated by 200s time intervals). In the case of HOC, CFAST only 
accepts one heat of combustion value, while DC-SIM uses both a complete oxidation and an 
incomplete oxidation heat of combustion (two values) - implying that a direct assignment of one 
of the DC-SIM values to the equivalent CFAST parameter would be an approximating 
simplification. 
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Table D-4 

Incomparable parameters between CFAST and DC-SIM 

Parameter 
FQDOT (rate of heat release of the fire) 

HOC (heat of combustion) 

wall density 

Explanation 
Needed to ignite compartment in CFAST; 
Only an internal parameter in DC-SIM. 
DC-SIM uses two different HOC values: one 
for complete combustion and one for 
incomplete combustion. CFAST uses only one 
HOC value.  
Necessary in CFAST; unused in DC-SIM. 

For such parameters, we must demonstrate their independence from bulkhead conductivity. We 
have already shown that FQDOT (the heat release rate of the fire) does not affect the rate of 
cooling of the fire after flashover, and hence does not affect bulkhead conductivity. How do we 
know that the cooling rate for the lower zone is independent of the heat of combustion (HOC) 
parameter? The default HOC value in CFAST is 5.0* 107. We varied this parameter and 
measured the resulting cooling rates for the lower zone (cooling rate calculated using 
temperatures at 1500s and 2000s); they demonstrate that HOC does not correlate with the lower 
zone-cooling constant (see Table 53). 

Table D-5 

Lower zone cooling constants for various 

heat of combustion values in CFAST simulations 

Heat of combustion in CFAST simulation 
5.0*10° 
2.0* 10s 

1.0*10 T 

5.0*10' 
3.0*10' 
6.0*10° 
5.0*10° 

Lower zone cooling rate 
-0.00033 
-0.00033 
-0.00032 
-0.00034 
-0.00033 
-0.00033 
-0.00032 

It is interesting to note that the cooling constant values can vary in the 5th (least significant) 
decimal place, even between identical runs of the same scenario. Observe the cooling constant 
calculated for the default HOC in Table 5 and that calculated with the same (default) HOC in 
Table 3 - these were different runs of CFAST, but using the same parameters. 
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D.3.1 Effect of Bulkhead Material Density on Cooling Rate in CFAST 
Simulation 

DC-SIM does not use bulkhead material density in its conduction calculations; all ship walls are 
assumed to be the same material, so tuning the bulkhead conduction parameter should tune the 
density as well. In contrast, CFAST requires that the density of the materials comprising the 
bulkheads of each compartment be specified, and factors density into its conduction calculations. 
Thus, in order that DC-SIM and CFAST represent the same fire conditions, the CFAST wall 
density parameter must be chosen correctly. As the graphs below indicate, the selection of this 
parameter critically affects both the value and the numerical stability of the cooling rate. Notice 
the unusual appearance of the cooling rate "curves" - rates oscillated significantly, and even 
after filtering through a moving average window, the unconnected appearance remains (Figure 
D-7). 

As the density decreases, the (post-flashover) cooling rate becomes more nearly constant - 
representing pure Newtonian cooling (as expected, since if the bulkheads have no density, then 
they have no mass, and thus can absorb no heat, and function merely to transfer heat between the 
compartment and the ambient environment). We attempted to reduce the bulkhead density to a 
very small value in CFAST to minimize its effect, but reducing the density below 2.5 kg/m 
resulted in significant numerical instability, and results could not be computed for densities less 
than 1, due to (numerical) "matrix singularities" (as CFAST reported). (This is not a reason for 
complaint, since structural materials typically have a much higher density than 2.5 kg/m .) In 
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CFAST, the partial derivative of temperature with respect to time (for heat conduction) is 
proportional to the product of the Laplacian of the temperature and the inverse of the density, 
resulting in instability for small densities. 

After arbitrarily picking a default wall density of 100 kg/m3, we determined that this is a 
reasonable approximation of the actual density of the walls. The usual compartment wall 
material is honeycombed steel. While the density of solid steel is between 6000 and 8000 kg/m3, 
the honeycomb structure results in numerous air spaces, such that only about 1/60 of the wall 
material is steel, resulting in a net wall density of about 100 kg/m3. 

As an interesting aside, the amplitude of the oscillation of the cooling rate - even considering 
that the cooling rates shown are averages over the previous 20 values - increases proportionally 
to the density. 

D.4 Other Factors Affecting Results 

D.4.1 Bulkhead Conductivity in CFAST 

The CFAST material properties database also requires a conductivity coefficient for the 
bulkheads. We determined, however, that this coefficient has little correlation with the cooling 
rate of the compartment - though it correlates significantly with the temperature of the lower 
zone at t=3600s. We have no explanation for this phenomenon, and plan to research it further to 
determine its effect. 

Table D-6 

CFAST lower zone-cooling rates, given various CFAST bulkhead conductivities 

Wall conductivity 
in the CFAST 
simulation 

Resulting lower zone ending 
temperature (at t=3600s) 

Resulting lower zone cooling rate 

0.058 420.6 -0.00033 
0.4 342.6 -0.00033 
0.2 363.8 -0.00034 

D.4.2 First Ten Seconds of the Simulation 

Our specification that the fire begins at t=10s causes a minor problem of accuracy: when given 
FQDOT time points, CFAST interpolates between them to estimate the heat output of the fire. 
CFAST automatically assumes that the first FQDOT point is 0 W, at t=0s. So the temperature of 
the compartment in CFAST actually increases before the fire is supposed to ignite (at t=10s). 
However, this increase is minimal, a matter of 30-40K in the upper zone, 20K in the lower zone 
- and as will be discussed below, CFAST's temperatures throughout most of the simulation run 
are significantly lower than those of DC-SIM, implying that the initial temperature boost has 
little effect. Additionally, to measure the cooling rate, temperature values at t = 1500s and t = 
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2000s are collected - a sufficiently large time after start to smooth over any large differences 
caused by the 10s start time. 

D.4.3 "Ceiling Jet" Effect 
The "ceiling jet effect" provides an additional experimental parameter for CFAST simulations. 
A ceiling jet is a rapidly rising column of air above a fire in an enclosed compartment (with a 
ceiling). While numerical simulation of a ceiling jet adds significant computational cost, it more 
accurately represents the physical processes taking place in a compartment fire. Both DC-SIM 
and CFAST incorporate ceiling jet calculations into their models, although CFAST gives the user 
the option of turning off the ceiling jet calculations. We have performed CFAST simulations 
with and without this option, although for direct evaluation of DC-SIM performance, we 
compare it only against CFAST simulations with the ceiling jet activated. 

D.4.4 Limitations of CFAST's Heat Conduction Model 
CFAST's model of horizontal heat conduction transfers heat from a compartment through its 
bulkheads to a heat sink of ambient temperature. Heat is not conducted between horizontally 
adjacent compartments (although it is conducted between vertically adjacent compartments) 
(ibid. pp. 3, 4). In contrast, DC-SIM does account for heat conduction between compartments, 
both in the horizontal and vertical directions. While CFAST cannot be used to test DC-SIM'S 
horizontal heat conduction from one compartment to another, the general phenomenon of heat 
conduction can be measured in DC-SIM by examining heat transfer between a single 
compartment and the outside world through the walls. Consequently, focusing our attention on 
single-compartment models can make the two simulations comparable. 

D.5 Conclusions 
We recommend for now that the bulkhead conductivity parameter in DC-SIM be set to 0.058, on 
evidence of the lower zone cooling rate. Adjusting the boundary value coefficient may require 
further tweaking of the bulkhead conductivity parameter. The relationship between temperature 
at t=3600s, cooling rate, and the CFAST wall conductivity parameter requires further 
investigation. 
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D.6 Appendix to DC-SIM/CFAST Comparison 

D.6.1 Heats of Combustion for Both Simulators 

CFAST uses only one heat of combustion (HOC) parameter, whose default value is 5*107. hi 
contrast, DC-SIM uses two HOC values: one for complete combustion, whose default is 6* 106, 
and one for incomplete combustion, whose default is 3 * 106. 

Table D-7 

Wall material properties required for a CFAST simulation 

Wall material property 
name 

conductivity (W/m/K) 

specific heat (J/kg/K) 

density (kg/m ) 

thickness (m) 

emissivity (dimensionless) 

Standard 
CFAST value 

0.2 

559 

100 

0.3 

0.9 

Corresponding 
DC-SIM 
parameter 

conductivity 

thickness 

Default value of DC-SIM 
parameter 

0.2 

0.3 

D.6.2 Version Information 

CFAST version 3.16 was used for all of the above tests. The DC-SIM version employed in all 
the above tests stems from the 2 March 2000 release (with modifications for data collection 
completed on 24 March 2000). 
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